Xinjian Ye , Tan Chen , Jiuhao Cheng, Yue Song, Peihui Ding, Zhiyong Wang, Qianming Chen
{"title":"Causal effects of circulating inflammatory proteins on oral phenotypes: Deciphering immune-mediated profiles in the host-oral axis","authors":"Xinjian Ye , Tan Chen , Jiuhao Cheng, Yue Song, Peihui Ding, Zhiyong Wang, Qianming Chen","doi":"10.1016/j.intimp.2024.113642","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Oral manifestations function as precursors to potential systemic pathologies, signaling early indicators of underlying health complications or immunological dysfunctions. Within these dynamics, circulating inflammatory proteins are recognized as critical mediators in immunopharmacology, bridging holistic health, immune response, and oral health.</div></div><div><h3>Methods</h3><div>We employed genetic data from genome-wide association studies to perform comprehensive Mendelian randomization (MR) analyses on 91 circulating inflammatory proteins and 17 oral phenotypes. Six MR algorithms and five auxiliary control measures were utilized to estimate the causal effects. Subsequently, the MR-Bayesian model averaging (MR-BMA) approach was conducted to elucidate the priorities in host-oral communication, followed by network analyses to explore the interactions among phenotypes.</div></div><div><h3>Results</h3><div>After multiple corrections, MR identified five genetically predicted proteins associated with oral phenotypes. Specifically, FGF21 was correlated with Nteeth and DMFS; hGDNF with gingival pain; CCL4 with stomatitis; and S100A12 with denture use. The causal associations remained robust in sensitivity analyses. Nine protein-phenotype clusters were prioritized using MR-BMA. Among these, S100A12, FGF19, FGF21, and CCL4 exhibited extensive correlations with various oral phenotypes.</div></div><div><h3>Conclusions</h3><div>Our study offers novel genetic insights into the causal relationships, prioritizations, and connections between circulating inflammatory proteins and oral phenotypes. These findings comprehensively depict immune-mediated proteomic profiles underlying the host-oral axis, providing significant implications for clinical practice, public health, and immunopharmacology.</div></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"144 ","pages":"Article 113642"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567576924021647","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Oral manifestations function as precursors to potential systemic pathologies, signaling early indicators of underlying health complications or immunological dysfunctions. Within these dynamics, circulating inflammatory proteins are recognized as critical mediators in immunopharmacology, bridging holistic health, immune response, and oral health.
Methods
We employed genetic data from genome-wide association studies to perform comprehensive Mendelian randomization (MR) analyses on 91 circulating inflammatory proteins and 17 oral phenotypes. Six MR algorithms and five auxiliary control measures were utilized to estimate the causal effects. Subsequently, the MR-Bayesian model averaging (MR-BMA) approach was conducted to elucidate the priorities in host-oral communication, followed by network analyses to explore the interactions among phenotypes.
Results
After multiple corrections, MR identified five genetically predicted proteins associated with oral phenotypes. Specifically, FGF21 was correlated with Nteeth and DMFS; hGDNF with gingival pain; CCL4 with stomatitis; and S100A12 with denture use. The causal associations remained robust in sensitivity analyses. Nine protein-phenotype clusters were prioritized using MR-BMA. Among these, S100A12, FGF19, FGF21, and CCL4 exhibited extensive correlations with various oral phenotypes.
Conclusions
Our study offers novel genetic insights into the causal relationships, prioritizations, and connections between circulating inflammatory proteins and oral phenotypes. These findings comprehensively depict immune-mediated proteomic profiles underlying the host-oral axis, providing significant implications for clinical practice, public health, and immunopharmacology.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.