{"title":"Convergent Evolution Associated with the Loss of Developmental Diapause May Promote Extended Lifespan in Bees.","authors":"Priscila K F Santos, Karen M Kapheim","doi":"10.1093/gbe/evae255","DOIUrl":null,"url":null,"abstract":"<p><p>Diapause has long been proposed to play a significant role in the evolution of eusociality in Hymenoptera. Recent studies have shown that shifts in the diapause stage precede social evolution in wasps and bees; however, the genomic basis remains unknown. Given the overlap in molecular pathways that regulate diapause and lifespan, we hypothesized that the evolutionary loss of developmental diapause may lead to extended lifespan among adults, which is a prerequisite for the evolution of eusociality. To test whether the loss of prepupal diapause is followed by genomic changes associated with lifespan extension, we compared 27 bee genomes with or without prepupal diapause. Our results point to several potential mechanisms for lifespan extension in species lacking prepupal diapause, including the loss of the growth hormone PTTH and its receptor TORSO, along with convergent selection in genes known to regulate lifespan in animals. Specifically, we observed purifying selection of prolongevity genes and relaxed selection of antilongevity genes within the IIS/TOR pathway in species that have lost prepupal diapause. Changes in selection pressures on this pathway may lead to the evolution of new phenotypes, such as lifespan extension and altered responses to nutritional signals that are crucial for social evolution.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632380/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gbe/evae255","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diapause has long been proposed to play a significant role in the evolution of eusociality in Hymenoptera. Recent studies have shown that shifts in the diapause stage precede social evolution in wasps and bees; however, the genomic basis remains unknown. Given the overlap in molecular pathways that regulate diapause and lifespan, we hypothesized that the evolutionary loss of developmental diapause may lead to extended lifespan among adults, which is a prerequisite for the evolution of eusociality. To test whether the loss of prepupal diapause is followed by genomic changes associated with lifespan extension, we compared 27 bee genomes with or without prepupal diapause. Our results point to several potential mechanisms for lifespan extension in species lacking prepupal diapause, including the loss of the growth hormone PTTH and its receptor TORSO, along with convergent selection in genes known to regulate lifespan in animals. Specifically, we observed purifying selection of prolongevity genes and relaxed selection of antilongevity genes within the IIS/TOR pathway in species that have lost prepupal diapause. Changes in selection pressures on this pathway may lead to the evolution of new phenotypes, such as lifespan extension and altered responses to nutritional signals that are crucial for social evolution.
期刊介绍:
About the journal
Genome Biology and Evolution (GBE) publishes leading original research at the interface between evolutionary biology and genomics. Papers considered for publication report novel evolutionary findings that concern natural genome diversity, population genomics, the structure, function, organisation and expression of genomes, comparative genomics, proteomics, and environmental genomic interactions. Major evolutionary insights from the fields of computational biology, structural biology, developmental biology, and cell biology are also considered, as are theoretical advances in the field of genome evolution. GBE’s scope embraces genome-wide evolutionary investigations at all taxonomic levels and for all forms of life — within populations or across domains. Its aims are to further the understanding of genomes in their evolutionary context and further the understanding of evolution from a genome-wide perspective.