Stretchable and Self-Adhesive Conductors for Smart Epidermal Electronics.

IF 4.2 3区 化学 Q2 POLYMER SCIENCE
Lin Wang, Desheng Kong
{"title":"Stretchable and Self-Adhesive Conductors for Smart Epidermal Electronics.","authors":"Lin Wang, Desheng Kong","doi":"10.1002/marc.202400774","DOIUrl":null,"url":null,"abstract":"<p><p>Epidermal electronics utilize deformable devices that are seamlessly integrated into the body for various cutting-edge applications. Stretchable conductors are essential for creating electrodes in these devices, allowing them to interface with the skin for sensing and stimulation. Despite considerable progress in improved deformability, these conductors may not easily adhere to the skin for long-term use. There is a growing interest in imparting self-adhesive properties to epidermal devices to ensure secure integration with the body. This article focuses on the emerging field of stretchable and self-adhesive conductors. It explores the design strategy required to enable stretchability and conformability in these materials and discusses their pivotal applications in smart epidermal electronics. Additionally, this article also addresses the current challenges and future directions in this dynamic area of research.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2400774"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400774","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Epidermal electronics utilize deformable devices that are seamlessly integrated into the body for various cutting-edge applications. Stretchable conductors are essential for creating electrodes in these devices, allowing them to interface with the skin for sensing and stimulation. Despite considerable progress in improved deformability, these conductors may not easily adhere to the skin for long-term use. There is a growing interest in imparting self-adhesive properties to epidermal devices to ensure secure integration with the body. This article focuses on the emerging field of stretchable and self-adhesive conductors. It explores the design strategy required to enable stretchability and conformability in these materials and discusses their pivotal applications in smart epidermal electronics. Additionally, this article also addresses the current challenges and future directions in this dynamic area of research.

用于智能表皮电子设备的可伸缩自粘导体。
表皮电子设备利用可变形装置与人体无缝结合,用于各种尖端应用。可拉伸导体对于在这些设备中创建电极至关重要,可使它们与皮肤连接,从而实现传感和刺激。尽管在改善可变形性方面取得了长足进步,但这些导体可能不容易附着在皮肤上供长期使用。人们对赋予表皮设备自粘性以确保与人体安全结合的兴趣与日俱增。本文将重点讨论可拉伸和自粘导体这一新兴领域。文章探讨了实现这些材料的拉伸性和保形性所需的设计策略,并讨论了它们在智能表皮电子设备中的关键应用。此外,本文还探讨了这一充满活力的研究领域目前面临的挑战和未来的发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信