Seasonality and climate modes influence the temporal clustering of unique atmospheric rivers in the Western U.S

IF 8.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Zhiqi Yang, Michael J. DeFlorio, Agniv Sengupta, Jiabao Wang, Christopher M. Castellano, Alexander Gershunov, Kristen Guirguis, Emily Slinskey, Bin Guan, Luca Delle Monache, F. Martin Ralph
{"title":"Seasonality and climate modes influence the temporal clustering of unique atmospheric rivers in the Western U.S","authors":"Zhiqi Yang, Michael J. DeFlorio, Agniv Sengupta, Jiabao Wang, Christopher M. Castellano, Alexander Gershunov, Kristen Guirguis, Emily Slinskey, Bin Guan, Luca Delle Monache, F. Martin Ralph","doi":"10.1038/s43247-024-01890-x","DOIUrl":null,"url":null,"abstract":"Atmospheric rivers (ARs) are narrow corridors of intense water vapor transport, shaping precipitation, floods, and economies. Temporal clustering of ARs tripled losses compared to isolated events, yet the reasons behind this clustering remain unclear. AR orientation further modulates hydrological impacts through terrain interaction. Here we identify unique ARs over the North Pacific and Western U.S. and utilize Cox regression and composite analysis to examine how six major climate modes influence temporal clustering of unique ARs and orientation during extended boreal winter (November to March). Results show that climate modes condition temporal clustering of unique ARs. The Pacific-North American weather pattern strongly modulates the clustering over the Western U.S. from early to late winter. The quasi-biennial oscillation and Pacific decadal oscillation affect late winter clustering, while the Arctic oscillation dominates early winter. Climate modes also strongly influence AR orientation, with ENSO particularly affecting the orientation of temporally clustered ARs. The Pacific-North American weather pattern significantly influences unique atmospheric river temporal clustering in the Western U.S., with quasi-biennial oscillation and Pacific decadal oscillation affecting late winter clustering and Arctic oscillation dominating early winter, according to analysis of six climate modes’ influence on unique atmospheric river clustering.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-16"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01890-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01890-x","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Atmospheric rivers (ARs) are narrow corridors of intense water vapor transport, shaping precipitation, floods, and economies. Temporal clustering of ARs tripled losses compared to isolated events, yet the reasons behind this clustering remain unclear. AR orientation further modulates hydrological impacts through terrain interaction. Here we identify unique ARs over the North Pacific and Western U.S. and utilize Cox regression and composite analysis to examine how six major climate modes influence temporal clustering of unique ARs and orientation during extended boreal winter (November to March). Results show that climate modes condition temporal clustering of unique ARs. The Pacific-North American weather pattern strongly modulates the clustering over the Western U.S. from early to late winter. The quasi-biennial oscillation and Pacific decadal oscillation affect late winter clustering, while the Arctic oscillation dominates early winter. Climate modes also strongly influence AR orientation, with ENSO particularly affecting the orientation of temporally clustered ARs. The Pacific-North American weather pattern significantly influences unique atmospheric river temporal clustering in the Western U.S., with quasi-biennial oscillation and Pacific decadal oscillation affecting late winter clustering and Arctic oscillation dominating early winter, according to analysis of six climate modes’ influence on unique atmospheric river clustering.
季节性和气候模式影响美国西部独特大气河流的时间聚类
大气河流(ARs)是强烈水汽输送的狭窄走廊,影响着降水、洪水和经济。与孤立事件相比,AR 的时间集群使损失增加了两倍,但这种集群背后的原因仍不清楚。AR 方向通过地形相互作用进一步调节水文影响。在此,我们确定了北太平洋和美国西部的独特 AR,并利用考克斯回归和综合分析来研究六种主要气候模式如何在延长的北方冬季(11 月至次年 3 月)影响独特 AR 的时间集群和方向。结果表明,气候模式对独特 AR 的时间聚类有影响。从初冬到晚冬,太平洋-北美天气模式对美国西部的集群有强烈的调节作用。准两年涛动和太平洋十年涛动影响冬末集群,而北极涛动则主导冬初集群。气候模式也强烈影响着AR的方向,厄尔尼诺/南方涛动尤其影响着时间上聚集的AR的方向。根据六种气候模式对美国西部独特的大气河流时间聚类的影响分析,太平洋-北美气候模式对美国西部独特的大气河流时间聚类有显著影响,准双年性涛动和太平洋十年涛动影响晚冬的聚类,而北极涛动主导早冬的聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Earth & Environment
Communications Earth & Environment Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
8.60
自引率
2.50%
发文量
269
审稿时长
26 weeks
期刊介绍: Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science. Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信