Photomediated Cationic Ring-Opening Polymerization of Cyclosiloxanes with Temporal Control

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wenxu Zhang, Shen Li, Shuting Liu, Tian-Tian Wang, Zheng-Hong Luo, Chao Bian* and Yin-Ning Zhou*, 
{"title":"Photomediated Cationic Ring-Opening Polymerization of Cyclosiloxanes with Temporal Control","authors":"Wenxu Zhang,&nbsp;Shen Li,&nbsp;Shuting Liu,&nbsp;Tian-Tian Wang,&nbsp;Zheng-Hong Luo,&nbsp;Chao Bian* and Yin-Ning Zhou*,&nbsp;","doi":"10.1021/jacsau.4c0068210.1021/jacsau.4c00682","DOIUrl":null,"url":null,"abstract":"<p >Precision synthesis of polyorganosiloxanes and temporal control over the polymerization process during ring-opening polymerization (ROP) of cyclosiloxanes remain challenging due to the occurrence of side reactions, e.g., intramolecular transfer (backbiting) and intermolecular chain transfer, and irreversible catalyst transformation. In this study, a merocyanine-based photoacid catalyst is developed for cationic ROP of different cyclosiloxanes. A series of well-defined cyclotrisiloxane polymers with predetermined molar masses and low dispersities (<i>Đ</i> &lt; 1.30) are successfully synthesized under various conditions (i.e., different catalyst loadings, initiator concentrations, solvents, and monomer types). Mechanistic insights by experiments and theoretical calculations suggest that the cationic active species, siloxonium ions, are combined with the catalyst anions to form tight ion pairs, thereby attenuating the reactivity of active species and subsequently minimizing side reactions. An efficient photocatalytic cycle is established among the catalyst, monomer, and polymer chain due to the rapid and reversible isomeric phototransformation of the catalyst, which endows the polymerization process with excellent temporal control. Successful in situ chain extension further confirms the controlled characteristics of photomediated CROP. This as-developed polymerization strategy effectively addresses long-standing challenges in the field of polyorganosiloxane synthesis.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"4 11","pages":"4317–4327 4317–4327"},"PeriodicalIF":8.5000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c00682","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.4c00682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Precision synthesis of polyorganosiloxanes and temporal control over the polymerization process during ring-opening polymerization (ROP) of cyclosiloxanes remain challenging due to the occurrence of side reactions, e.g., intramolecular transfer (backbiting) and intermolecular chain transfer, and irreversible catalyst transformation. In this study, a merocyanine-based photoacid catalyst is developed for cationic ROP of different cyclosiloxanes. A series of well-defined cyclotrisiloxane polymers with predetermined molar masses and low dispersities (Đ < 1.30) are successfully synthesized under various conditions (i.e., different catalyst loadings, initiator concentrations, solvents, and monomer types). Mechanistic insights by experiments and theoretical calculations suggest that the cationic active species, siloxonium ions, are combined with the catalyst anions to form tight ion pairs, thereby attenuating the reactivity of active species and subsequently minimizing side reactions. An efficient photocatalytic cycle is established among the catalyst, monomer, and polymer chain due to the rapid and reversible isomeric phototransformation of the catalyst, which endows the polymerization process with excellent temporal control. Successful in situ chain extension further confirms the controlled characteristics of photomediated CROP. This as-developed polymerization strategy effectively addresses long-standing challenges in the field of polyorganosiloxane synthesis.

光介导环硅氧烷阳离子开环聚合的时间控制
在环硅氧烷开环聚合(ROP)过程中,由于会发生副反应(如分子内转移(反向)和分子间链转移)以及催化剂的不可逆转变,因此聚有机硅氧烷的精确合成和聚合过程的时间控制仍具有挑战性。本研究开发了一种基于美拉尼菁的光酸催化剂,用于不同环硅氧烷的阳离子 ROP。在不同条件下(即不同的催化剂负载量、引发剂浓度、溶剂和单体类型),成功合成了一系列具有预定摩尔质量和低分散度(Đ < 1.30)的定义明确的环三硅氧烷聚合物。通过实验和理论计算得出的机理结论表明,阳离子活性物种硅氧烷离子与催化剂阴离子结合形成紧密的离子对,从而削弱了活性物种的反应性,进而最大限度地减少了副反应。由于催化剂的快速、可逆异构光转化,催化剂、单体和聚合物链之间建立了高效的光催化循环,从而使聚合过程具有出色的时间控制能力。成功的原位链延伸进一步证实了光导 CROP 的可控特性。这种新开发的聚合策略有效地解决了聚有机硅氧烷合成领域长期存在的难题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信