Enhanced Carbon Dioxide Capture from Diluted Streams with Functionalized Metal–Organic Frameworks

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY
Andrzej Gładysiak*, Ah-Young Song, Rebecca Vismara, Madison Waite, Nawal M. Alghoraibi, Ammar H. Alahmed, Mourad Younes, Hongliang Huang, Jeffrey A. Reimer and Kyriakos C. Stylianou*, 
{"title":"Enhanced Carbon Dioxide Capture from Diluted Streams with Functionalized Metal–Organic Frameworks","authors":"Andrzej Gładysiak*,&nbsp;Ah-Young Song,&nbsp;Rebecca Vismara,&nbsp;Madison Waite,&nbsp;Nawal M. Alghoraibi,&nbsp;Ammar H. Alahmed,&nbsp;Mourad Younes,&nbsp;Hongliang Huang,&nbsp;Jeffrey A. Reimer and Kyriakos C. Stylianou*,&nbsp;","doi":"10.1021/jacsau.4c0092310.1021/jacsau.4c00923","DOIUrl":null,"url":null,"abstract":"<p >Capturing carbon dioxide from diluted streams, such as flue gas originating from natural gas combustion, can be achieved using recyclable, humidity-resistant porous materials. Three such materials were synthesized by chemically modifying the pores of metal–organic frameworks (MOFs) with Lewis basic functional groups. These materials included aluminum 1,2,4,5-tetrakis(4-carboxylatophenyl) benzene (Al-TCPB) and two novel MOFs: Al-TCPB(OH), and Al-TCPB(NH<sub>2</sub>), both isostructural to Al-TCPB, and chemically and thermally stable. Single-component adsorption isotherms revealed significantly increased CO<sub>2</sub> uptakes upon pore functionalization. Breakthrough experiments using a 4/96 CO<sub>2</sub>/N<sub>2</sub> gas mixture humidified up to 75% RH at 25 °C showed that Al-TCPB(OH) displayed the highest CO<sub>2</sub> dynamic breakthrough capacity (0.52 mmol/g) followed by that of Al-TCPB(NH<sub>2</sub>) (0.47 mmol/g) and Al-TCPB (0.26 mmol/g). All three materials demonstrated excellent recyclability over eight humid breakthrough-regeneration cycles. Solid-state nuclear magnetic resonance spectra revealed that upon CO<sub>2</sub>/H<sub>2</sub>O loading, H<sub>2</sub>O molecules do not interfere with CO<sub>2</sub> physisorption and are localized near the Al-O(H) chain and the –NH<sub>2</sub> functional group, whereas CO<sub>2</sub> molecules are spatially confined in Al-TCPB(OH) and relatively mobile in Al-TCPB(NH<sub>2</sub>). Density functional theory calculations confirmed the impact of the adsorbaphore site between of two parallel ligand-forming benzene rings for CO<sub>2</sub> capture. Our study elucidates how pore functionalization influences the fundamental adsorption properties of MOFs, underscoring their practical potential as porous sorbent materials.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"4 11","pages":"4527–4536 4527–4536"},"PeriodicalIF":8.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c00923","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.4c00923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Capturing carbon dioxide from diluted streams, such as flue gas originating from natural gas combustion, can be achieved using recyclable, humidity-resistant porous materials. Three such materials were synthesized by chemically modifying the pores of metal–organic frameworks (MOFs) with Lewis basic functional groups. These materials included aluminum 1,2,4,5-tetrakis(4-carboxylatophenyl) benzene (Al-TCPB) and two novel MOFs: Al-TCPB(OH), and Al-TCPB(NH2), both isostructural to Al-TCPB, and chemically and thermally stable. Single-component adsorption isotherms revealed significantly increased CO2 uptakes upon pore functionalization. Breakthrough experiments using a 4/96 CO2/N2 gas mixture humidified up to 75% RH at 25 °C showed that Al-TCPB(OH) displayed the highest CO2 dynamic breakthrough capacity (0.52 mmol/g) followed by that of Al-TCPB(NH2) (0.47 mmol/g) and Al-TCPB (0.26 mmol/g). All three materials demonstrated excellent recyclability over eight humid breakthrough-regeneration cycles. Solid-state nuclear magnetic resonance spectra revealed that upon CO2/H2O loading, H2O molecules do not interfere with CO2 physisorption and are localized near the Al-O(H) chain and the –NH2 functional group, whereas CO2 molecules are spatially confined in Al-TCPB(OH) and relatively mobile in Al-TCPB(NH2). Density functional theory calculations confirmed the impact of the adsorbaphore site between of two parallel ligand-forming benzene rings for CO2 capture. Our study elucidates how pore functionalization influences the fundamental adsorption properties of MOFs, underscoring their practical potential as porous sorbent materials.

利用功能化金属有机框架增强稀释溪流中的二氧化碳捕获能力
利用可回收、耐潮湿的多孔材料可以捕获稀释气流(如天然气燃烧产生的烟气)中的二氧化碳。通过用路易斯碱性官能团对金属有机框架(MOF)的孔隙进行化学修饰,合成了三种这样的材料。这些材料包括 1,2,4,5-四(4-羧基邻苯)苯铝(Al-TCPB)和两种新型 MOF:Al-TCPB(OH)和 Al-TCPB(NH2),二者与 Al-TCPB 结构相同,且化学性质和热稳定性都很好。单组分吸附等温线表明,孔隙功能化后二氧化碳的吸收量显著增加。使用 4/96 CO2/N2 混合气体在 25 °C 下加湿至 75% 相对湿度进行的突破实验表明,Al-TCPB(OH)的二氧化碳动态突破能力最高(0.52 mmol/g),其次是 Al-TCPB(NH2)(0.47 mmol/g)和 Al-TCPB(0.26 mmol/g)。这三种材料在八个潮湿的突破-再生循环中都表现出极佳的可回收性。固态核磁共振波谱显示,在装入 CO2/H2O 后,H2O 分子不会干扰 CO2 的物理吸附,并定位于 Al-O(H)链和 -NH2 官能团附近,而 CO2 分子在 Al-TCPB(OH)中空间受限,在 Al-TCPB(NH2)中则相对流动。密度泛函理论计算证实了两个平行配体形成的苯环之间的吸附位点对二氧化碳捕获的影响。我们的研究阐明了孔隙功能化如何影响 MOFs 的基本吸附特性,凸显了它们作为多孔吸附材料的实用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信