Yuting Gong , Dong Li , Min Chen , Anhui Lin , Quansheng Chen , Xiaomei Chen
{"title":"Au@Ag hollow nanoshells-based SERS integrated microfluidic chip as a sample-to-answer platform for the ultra-sensitive detection of geosmin","authors":"Yuting Gong , Dong Li , Min Chen , Anhui Lin , Quansheng Chen , Xiaomei Chen","doi":"10.1016/j.aca.2024.343471","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Geosmin (GSM) can compromise the immune systems of aquatic organisms, rendering them more vulnerable to viral and bacterial infections, thereby adversely affecting their growth, reproduction, yield, and quality. Given the relatively low odor thresholds of GSM, there is a critical demand for the development of a highly sensitive and rapid detection method. According to the principle of Surface-enhanced Raman spectroscopy (SERS), localized surface plasmon resonance (LSPR) greatly enhances the Raman signals of adsorbed molecules. To date, no study has reported the application of SERS to detect GSM.</div></div><div><h3>Results</h3><div>Dual-metal nanomaterials with hollow structures have been proven to provide a large surface area and heightened localized surface plasmon resonance, thereby enhancing the sensitivity of Raman signals. In this study, a sample-to-answer platform was constructed by integrating Au@Ag hollow nanoshells (HNSs)-based SERS and a microfluidic chip for the sensitive, fast, and direct determination of GSM. Under 532 nm excitation, GSM exhibit Raman peaks on the SERS-active Au@Ag HNSs, and there is a relationship between the peak intensity and the concentration of GSM. Owing to the integration of the microfluidic chip, only microliters of reagent are required, and the test results can be achieved within 4 min. The constructed sample-to-answer platform showed a good linear response to GSM in the range of 1 ng/L–1 mg/L, with a detection limit of 0.16 ng/L. An optimal calibration model is established by combining stoichiometric algorithms.</div></div><div><h3>Significance</h3><div>This work realized the ultra-highly sensitive and fast determination of GSM based on SERS-active Au@Ag HNSs, which provides new insights and is very promising for the on-site monitoring of earthy odors. Our study makes a significant contribution to the literature because the developed SERS-based detection method does not require labels or biomaterials, providing the possibility of highly sensitive and on-site testing of contaminants in food and the environment.</div></div>","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"1335 ","pages":"Article 343471"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003267024012728","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Geosmin (GSM) can compromise the immune systems of aquatic organisms, rendering them more vulnerable to viral and bacterial infections, thereby adversely affecting their growth, reproduction, yield, and quality. Given the relatively low odor thresholds of GSM, there is a critical demand for the development of a highly sensitive and rapid detection method. According to the principle of Surface-enhanced Raman spectroscopy (SERS), localized surface plasmon resonance (LSPR) greatly enhances the Raman signals of adsorbed molecules. To date, no study has reported the application of SERS to detect GSM.
Results
Dual-metal nanomaterials with hollow structures have been proven to provide a large surface area and heightened localized surface plasmon resonance, thereby enhancing the sensitivity of Raman signals. In this study, a sample-to-answer platform was constructed by integrating Au@Ag hollow nanoshells (HNSs)-based SERS and a microfluidic chip for the sensitive, fast, and direct determination of GSM. Under 532 nm excitation, GSM exhibit Raman peaks on the SERS-active Au@Ag HNSs, and there is a relationship between the peak intensity and the concentration of GSM. Owing to the integration of the microfluidic chip, only microliters of reagent are required, and the test results can be achieved within 4 min. The constructed sample-to-answer platform showed a good linear response to GSM in the range of 1 ng/L–1 mg/L, with a detection limit of 0.16 ng/L. An optimal calibration model is established by combining stoichiometric algorithms.
Significance
This work realized the ultra-highly sensitive and fast determination of GSM based on SERS-active Au@Ag HNSs, which provides new insights and is very promising for the on-site monitoring of earthy odors. Our study makes a significant contribution to the literature because the developed SERS-based detection method does not require labels or biomaterials, providing the possibility of highly sensitive and on-site testing of contaminants in food and the environment.
期刊介绍:
Analytica Chimica Acta has an open access mirror journal Analytica Chimica Acta: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Analytica Chimica Acta provides a forum for the rapid publication of original research, and critical, comprehensive reviews dealing with all aspects of fundamental and applied modern analytical chemistry. The journal welcomes the submission of research papers which report studies concerning the development of new and significant analytical methodologies. In determining the suitability of submitted articles for publication, particular scrutiny will be placed on the degree of novelty and impact of the research and the extent to which it adds to the existing body of knowledge in analytical chemistry.