The relationship between microstructural characteristics and galvanic effect, SCC behavior of friction stir welded joint in as-welded and heat-treated conditions
IF 11.2 1区 材料科学Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"The relationship between microstructural characteristics and galvanic effect, SCC behavior of friction stir welded joint in as-welded and heat-treated conditions","authors":"Yanming Xia, Dejing Zhou, Da-Hai Xia, Zhiming Gao, Linyue Bai, Wenbin Hu","doi":"10.1016/j.jmst.2024.11.005","DOIUrl":null,"url":null,"abstract":"The detailed precipitation behavior and grain structure in different sub-regions of friction stir welding (FSW) AA6061-T6 joint after post-weld solution and aging treatments were explored. And the effects of microstructural evolution on mechanical properties, macro/micro electrochemical corrosion behavior and stress corrosion cracking behavior were investigated. The inherent microstructural gradients in FSW joint lead to dramatic degradation of mechanical properties and the presence of macro-galvanic effect, with the latter exacerbating anodic dissolution in heat-affected zone (HAZ) induced by micro-galvanic corrosion and inhibiting pitting corrosion in stirred zone (SZ). Post-weld heat treatment (PWHT) causes the formation of matrix precipitates with similar densities in different sub-regions, resulting in optimized precipitate distribution, comprehensive hardness recovery, and diminished macro-galvanic effect. Grain boundary misorientation angle, grain size and pre-existing dislocations synergistically influence the evolution of grain boundary precipitates (GBPs) and precipitation-free zones (PFZs) during the PWHT. As a result, pitting corrosion is the dominant corrosion form in SZ due to the narrowest PFZ width and dispersed GBPs, while intergranular corrosion is caused by continuous GBPs in other sub-regions. This study verified the dominant role of macro-galvanic effect and micro-galvanic effect in the corrosion process of FSW joint and FSW-PWHT joint, respectively. The maximum SCC susceptibility at HAZ in As-FSWed joint is dominated by enhanced anodic dissolution due to macro-galvanic effect. The SCC sensitivity of FSW-PWHT joint is higher than that of FSW joint due to high electrochemical activity and corrosion rate caused by the severe stress concentration between sub-grains and recrystallized grains at the thermomechanical affected zone (TMAZ)/SZ interface.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"67 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.11.005","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The detailed precipitation behavior and grain structure in different sub-regions of friction stir welding (FSW) AA6061-T6 joint after post-weld solution and aging treatments were explored. And the effects of microstructural evolution on mechanical properties, macro/micro electrochemical corrosion behavior and stress corrosion cracking behavior were investigated. The inherent microstructural gradients in FSW joint lead to dramatic degradation of mechanical properties and the presence of macro-galvanic effect, with the latter exacerbating anodic dissolution in heat-affected zone (HAZ) induced by micro-galvanic corrosion and inhibiting pitting corrosion in stirred zone (SZ). Post-weld heat treatment (PWHT) causes the formation of matrix precipitates with similar densities in different sub-regions, resulting in optimized precipitate distribution, comprehensive hardness recovery, and diminished macro-galvanic effect. Grain boundary misorientation angle, grain size and pre-existing dislocations synergistically influence the evolution of grain boundary precipitates (GBPs) and precipitation-free zones (PFZs) during the PWHT. As a result, pitting corrosion is the dominant corrosion form in SZ due to the narrowest PFZ width and dispersed GBPs, while intergranular corrosion is caused by continuous GBPs in other sub-regions. This study verified the dominant role of macro-galvanic effect and micro-galvanic effect in the corrosion process of FSW joint and FSW-PWHT joint, respectively. The maximum SCC susceptibility at HAZ in As-FSWed joint is dominated by enhanced anodic dissolution due to macro-galvanic effect. The SCC sensitivity of FSW-PWHT joint is higher than that of FSW joint due to high electrochemical activity and corrosion rate caused by the severe stress concentration between sub-grains and recrystallized grains at the thermomechanical affected zone (TMAZ)/SZ interface.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.