{"title":"Ordered and Expanded Li Ion Channels for Dendrite‐Free and Fast Kinetics Lithium–Sulfur Battery","authors":"Da‐Qian Cai, Shi‐Xi Zhao, Huan Liu, Shuyu Zhou, Tong Gao, Ruihua Rao, Jianwei Zhao, Yirui Deng, Jin‐Lin Yang, Ruiping Liu","doi":"10.1002/adfm.202419165","DOIUrl":null,"url":null,"abstract":"The uncontrolled polysulfide shuttling and lithium dendrite growth greatly impede the practical implementation of Li–S batteries. These issues can be alleviated by constructing an artificial layer that immobilizes soluble polysulfides and regulates Li<jats:sup>+</jats:sup> flux. Here, a layer‐expanded lithium montmorillonite is fabricated through molecular intercalation to serve as a dual regulator for Li–S batteries. The lithiophilic montmorillonite, with its ordered and expanded Li<jats:sup>+</jats:sup> diffusion channels, exhibits a high transference number, and promotes homogeneous Li deposition. Additionally, its moderate adsorption of polysulfides, combined with favorable Li diffusion behavior, enhanced the redox kinetics of sulfur species. This unique structure enables a prolonged lifespan of 1000 cycles at 0.5C with a low capacity decay of 0.04% per cycle for practical Li–S batteries.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"115 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202419165","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The uncontrolled polysulfide shuttling and lithium dendrite growth greatly impede the practical implementation of Li–S batteries. These issues can be alleviated by constructing an artificial layer that immobilizes soluble polysulfides and regulates Li+ flux. Here, a layer‐expanded lithium montmorillonite is fabricated through molecular intercalation to serve as a dual regulator for Li–S batteries. The lithiophilic montmorillonite, with its ordered and expanded Li+ diffusion channels, exhibits a high transference number, and promotes homogeneous Li deposition. Additionally, its moderate adsorption of polysulfides, combined with favorable Li diffusion behavior, enhanced the redox kinetics of sulfur species. This unique structure enables a prolonged lifespan of 1000 cycles at 0.5C with a low capacity decay of 0.04% per cycle for practical Li–S batteries.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.