Biomaterials for bone tissue engineering: achievements to date and future directions.

Adithya Garimella, Subrata Bandhu Ghosh, Sanchita Bandyopadhyay-Ghosh
{"title":"Biomaterials for bone tissue engineering: achievements to date and future directions.","authors":"Adithya Garimella, Subrata Bandhu Ghosh, Sanchita Bandyopadhyay-Ghosh","doi":"10.1088/1748-605X/ad967c","DOIUrl":null,"url":null,"abstract":"<p><p>Advancement in medicine and technology has resulted into prevention of countless deaths and increased life span. However, it is important to note that, the modern lifestyle has altered the food habits, witnessed increased life-style stresses and road accidents leading to several health complications and one of the primary victims is the bone health. More often than ever, healthcare professionals encounter cases of massive bone fracture, bone loss and generation of critical sized bone defects. Surgical interventions, through the use of bone grafting techniques are necessary in such cases. Natural bone grafts (allografts, autografts and xenografts) however, have major drawbacks in terms of delayed rehabilitation, lack of appropriate donors, infection and morbidity that shifted the focus of several investigators to the direction of synthetic bone grafts. By employing biomaterials that are based on bone tissue engineering (BTE), synthetic bone grafts provide a more biologically acceptable approach to establishing the phases of bone healing. In BTE, various materials are utilized to support and enhance bone regeneration. Biodegradable polymers like poly-(lactic acid), poly-(glycolic acid), and poly-(<i>ϵ</i>-caprolactone) are commonly used for their customizable mechanical properties and ability to degrade over time, allowing for natural bone growth. PEG is employed in hydrogels to promote cell adhesion and growth. Ceramics, such as hydroxyapatite and beta-tricalcium phosphate (<i>β</i>-TCP) mimic natural bone mineral and support bone cell attachment, with<i>β</i>-TCP gradually resorbing as new bone forms. Composite materials, including polymer-ceramic and polymer-glasses, combine the benefits of both polymers and ceramics/glasses to offer enhanced mechanical and biological properties. Natural biomaterials like collagen, gelatin, and chitosan provide a natural matrix for cell attachment and tissue formation, with chitosan also offering antimicrobial properties. Hybrid materials such as decellularized bone matrix retain natural bone structure and biological factors, while functionalized scaffolds incorporate growth factors or bioactive molecules to further stimulate bone healing and integration. The current review article provides the critical insights on several biomaterials that could yield to revolutionary improvements in orthopedic medical fields. The introduction section of this article focuses on the statistical information on the requirements of various bone scaffolds globally and its impact on economy. In the later section, anatomy of the human bone, defects and diseases pertaining to human bone, and limitations of natural bone scaffolds and synthetic bone scaffolds were detailed. Biopolymers, bioceramics, and biometals-based biomaterials were discussed in further depth in the sections that followed. The article then concludes with a summary addressing the current trends and the future prospects of potential bone transplants.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/ad967c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Advancement in medicine and technology has resulted into prevention of countless deaths and increased life span. However, it is important to note that, the modern lifestyle has altered the food habits, witnessed increased life-style stresses and road accidents leading to several health complications and one of the primary victims is the bone health. More often than ever, healthcare professionals encounter cases of massive bone fracture, bone loss and generation of critical sized bone defects. Surgical interventions, through the use of bone grafting techniques are necessary in such cases. Natural bone grafts (allografts, autografts and xenografts) however, have major drawbacks in terms of delayed rehabilitation, lack of appropriate donors, infection and morbidity that shifted the focus of several investigators to the direction of synthetic bone grafts. By employing biomaterials that are based on bone tissue engineering (BTE), synthetic bone grafts provide a more biologically acceptable approach to establishing the phases of bone healing. In BTE, various materials are utilized to support and enhance bone regeneration. Biodegradable polymers like poly-(lactic acid), poly-(glycolic acid), and poly-(ϵ-caprolactone) are commonly used for their customizable mechanical properties and ability to degrade over time, allowing for natural bone growth. PEG is employed in hydrogels to promote cell adhesion and growth. Ceramics, such as hydroxyapatite and beta-tricalcium phosphate (β-TCP) mimic natural bone mineral and support bone cell attachment, withβ-TCP gradually resorbing as new bone forms. Composite materials, including polymer-ceramic and polymer-glasses, combine the benefits of both polymers and ceramics/glasses to offer enhanced mechanical and biological properties. Natural biomaterials like collagen, gelatin, and chitosan provide a natural matrix for cell attachment and tissue formation, with chitosan also offering antimicrobial properties. Hybrid materials such as decellularized bone matrix retain natural bone structure and biological factors, while functionalized scaffolds incorporate growth factors or bioactive molecules to further stimulate bone healing and integration. The current review article provides the critical insights on several biomaterials that could yield to revolutionary improvements in orthopedic medical fields. The introduction section of this article focuses on the statistical information on the requirements of various bone scaffolds globally and its impact on economy. In the later section, anatomy of the human bone, defects and diseases pertaining to human bone, and limitations of natural bone scaffolds and synthetic bone scaffolds were detailed. Biopolymers, bioceramics, and biometals-based biomaterials were discussed in further depth in the sections that followed. The article then concludes with a summary addressing the current trends and the future prospects of potential bone transplants.

骨组织工程生物材料:迄今取得的成就和未来发展方向。
医学和技术的进步避免了无数人的死亡,延长了人们的寿命。然而,值得注意的是,现代生活方式改变了人们的饮食习惯,生活压力和交通事故增加,导致多种健康并发症,其中一个主要受害者就是骨骼健康。医护人员比以往任何时候都更经常遇到大量骨折、骨质流失和严重骨缺损的病例。在这种情况下,有必要使用骨移植技术进行外科干预。然而,天然骨移植(同种异体移植、自体移植和异种移植)在延迟康复、缺乏合适的供体、感染和发病率等方面存在重大缺陷,因此一些研究人员将重点转向合成骨移植。通过采用基于骨组织工程学的生物材料,合成骨移植物为建立骨愈合阶段提供了一种生物学上更可接受的方法。本综述文章提供了有关几种生物材料的重要见解,这些生物材料可为骨科医学领域带来革命性的改进。文章的导言部分重点介绍了全球对各种骨支架需求的统计信息及其对经济的影响。在后面的章节中,详细介绍了人体骨骼的解剖结构、与人体骨骼有关的缺陷和疾病,以及天然骨支架和合成骨支架的局限性。随后的章节进一步深入讨论了生物聚合物、生物陶瓷和基于生物金属的生物材料。文章最后总结了潜在骨移植的当前趋势和未来前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信