Juliana Picinini-Zambelli , Ana Letícia Hilário Garcia , Juliana Da Silva
{"title":"Emerging pollutants in the aquatic environments: A review of genotoxic impacts","authors":"Juliana Picinini-Zambelli , Ana Letícia Hilário Garcia , Juliana Da Silva","doi":"10.1016/j.mrrev.2024.108519","DOIUrl":null,"url":null,"abstract":"<div><div>Urbanization and industrial growth have negatively impacted water quality, raising concerns about emerging aquatic pollutants. Despite advancements in water treatment, these substances persist, endangering aquatic life and human health. Although research has focused on the physiological effects of these pollutants, their genetic damage potential remains poorly understood. This systematic review aimed to consolidate existing knowledge on the genotoxic potential of emerging aquatic pollutants. A comprehensive search was conducted across major databases, encompassing articles published from 2001 to 2022. The review primarily focused on research articles that evaluated genotoxicity in environmental samples containing emerging pollutants, as well as in vitro studies using various concentrations of these substances. Fourteen articles were included in the review, with pharmaceutical compounds, personal care products, disinfection byproducts, and industrial chemicals being the most extensively investigated classes. Other notable pollutants included metals, cyanotoxins, antiseptics, pesticides, and caffeine. All these pollutants classes were found to cause DNA damage, either in vitro at specific concentrations or in complex environmental mixtures. The comet assay was the most frequently used method, owing to its sensitivity and practicality in assessing DNA damage. For some pollutants, different responses were observed when comparing in vitro and in vivo studies, emphasizing the need for studies employing both approaches. However, the limited number of available articles underscores the necessity for further research on the genotoxic potential of emerging pollutants. More research is required to clarify mutagenicity, DNA repair kinetics, and cumulative effects of pollutants, which are critical for shaping policies and ensuring safe water quality. A greater knowledge about these pollutants will enable better understanding risk mitigation, ultimately protecting public health and ecosystems.</div></div>","PeriodicalId":49789,"journal":{"name":"Mutation Research-Reviews in Mutation Research","volume":"795 ","pages":"Article 108519"},"PeriodicalIF":6.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research-Reviews in Mutation Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383574224000322","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Urbanization and industrial growth have negatively impacted water quality, raising concerns about emerging aquatic pollutants. Despite advancements in water treatment, these substances persist, endangering aquatic life and human health. Although research has focused on the physiological effects of these pollutants, their genetic damage potential remains poorly understood. This systematic review aimed to consolidate existing knowledge on the genotoxic potential of emerging aquatic pollutants. A comprehensive search was conducted across major databases, encompassing articles published from 2001 to 2022. The review primarily focused on research articles that evaluated genotoxicity in environmental samples containing emerging pollutants, as well as in vitro studies using various concentrations of these substances. Fourteen articles were included in the review, with pharmaceutical compounds, personal care products, disinfection byproducts, and industrial chemicals being the most extensively investigated classes. Other notable pollutants included metals, cyanotoxins, antiseptics, pesticides, and caffeine. All these pollutants classes were found to cause DNA damage, either in vitro at specific concentrations or in complex environmental mixtures. The comet assay was the most frequently used method, owing to its sensitivity and practicality in assessing DNA damage. For some pollutants, different responses were observed when comparing in vitro and in vivo studies, emphasizing the need for studies employing both approaches. However, the limited number of available articles underscores the necessity for further research on the genotoxic potential of emerging pollutants. More research is required to clarify mutagenicity, DNA repair kinetics, and cumulative effects of pollutants, which are critical for shaping policies and ensuring safe water quality. A greater knowledge about these pollutants will enable better understanding risk mitigation, ultimately protecting public health and ecosystems.
期刊介绍:
The subject areas of Reviews in Mutation Research encompass the entire spectrum of the science of mutation research and its applications, with particular emphasis on the relationship between mutation and disease. Thus this section will cover advances in human genome research (including evolving technologies for mutation detection and functional genomics) with applications in clinical genetics, gene therapy and health risk assessment for environmental agents of concern.