Ola Mohammed Youssef , Nermeen Hosney Lashine , Mohammad El-Nablaway , Mona Ibrahim El-yamany , Manar Monir Youssef , Dina Abdalla Arida
{"title":"Ferulic acid mitigated rotenone toxicity -Evoked Parkinson in rat model by featuring apoptosis, oxidative stress, and neuroinflammation signaling","authors":"Ola Mohammed Youssef , Nermeen Hosney Lashine , Mohammad El-Nablaway , Mona Ibrahim El-yamany , Manar Monir Youssef , Dina Abdalla Arida","doi":"10.1016/j.tice.2024.102614","DOIUrl":null,"url":null,"abstract":"<div><div>Over time, Parkinson disease (PD) develops as a neurological illness. The goal of this study was to see whether ferulic acid has any neuroprotective benefits on the cerebellum of rats that have Parkinson's disease brought on by rotenone poisoning. A total of twenty-four male albino rats, in good condition, weighed between 200 and 250 g and nine to ten weeks old, were employed in the investigation. The control group received 1 ml of sunflower oil intraperitoneally (i.p.) each day. Rats' motor performance was considerably worse when given rotenone than it was in the control group. Rats given Ferulic Acid (FA) showed a substantial drop in the amount of glutathione (GSH) in the cerebellum. Moreover, the injection of FA resulted in a significant reduction in the optical density (OD) of the immune-positive reaction for α-synuclein, and the area percentage of BCL-2 and NF-kB immunological positive response. FA therapy, surprisingly, enhanced the OD of TH immunopositive response and apoptotic regulators (BCL2) in the cerebellum. Furthermore, FA boosted BCL2 expression, confirming the antiapoptotic effects of FA. Based on these results, FA is probably a good candidate to treat neurodegenerative diseases brought on by long-term exposure to rotenone.</div></div>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"91 ","pages":"Article 102614"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004081662400315X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Over time, Parkinson disease (PD) develops as a neurological illness. The goal of this study was to see whether ferulic acid has any neuroprotective benefits on the cerebellum of rats that have Parkinson's disease brought on by rotenone poisoning. A total of twenty-four male albino rats, in good condition, weighed between 200 and 250 g and nine to ten weeks old, were employed in the investigation. The control group received 1 ml of sunflower oil intraperitoneally (i.p.) each day. Rats' motor performance was considerably worse when given rotenone than it was in the control group. Rats given Ferulic Acid (FA) showed a substantial drop in the amount of glutathione (GSH) in the cerebellum. Moreover, the injection of FA resulted in a significant reduction in the optical density (OD) of the immune-positive reaction for α-synuclein, and the area percentage of BCL-2 and NF-kB immunological positive response. FA therapy, surprisingly, enhanced the OD of TH immunopositive response and apoptotic regulators (BCL2) in the cerebellum. Furthermore, FA boosted BCL2 expression, confirming the antiapoptotic effects of FA. Based on these results, FA is probably a good candidate to treat neurodegenerative diseases brought on by long-term exposure to rotenone.
期刊介绍:
Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed.
Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.