Bridging activity gaps between batch and flow reactor configurations in the electroreduction of carbon dioxide

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Qiwen Sun, Linke Fu, Xiaoxia Chang, Bingjun Xu
{"title":"Bridging activity gaps between batch and flow reactor configurations in the electroreduction of carbon dioxide","authors":"Qiwen Sun,&nbsp;Linke Fu,&nbsp;Xiaoxia Chang,&nbsp;Bingjun Xu","doi":"10.1126/sciadv.adp5697","DOIUrl":null,"url":null,"abstract":"<div >To date, the understanding of various modes of CO<sub>2</sub> mass transport remains incomplete, impeding the transfer of catalysts identified in the more accessible electrochemical batch cells to high-performance flow cells. In this work, we demonstrate that the meniscus region formed between the electrode and the convex liquid level due to the electrowetting of the catalyst plays a vital role in the CO<sub>2</sub>RR in batch cells. CO<sub>2</sub>RR in the meniscus region in batch cells exhibits similar performance with that in flow cells, and the performance disparity between these two configurations largely disappears when conducting CO<sub>2</sub>RR primarily in the meniscus region. An assembled double-sided gas diffusion electrode with a gas channel is developed to maximize the meniscus-like region, achieving a CO<sub>2</sub>RR partial current density of 640 mA/cm<sup>2</sup><sub>geo</sub> on commercial Cu in the KHCO<sub>3</sub> electrolyte. This performance represents the highest CO<sub>2</sub>RR activity in neutral buffered media.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"10 47","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584008/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adp5697","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

To date, the understanding of various modes of CO2 mass transport remains incomplete, impeding the transfer of catalysts identified in the more accessible electrochemical batch cells to high-performance flow cells. In this work, we demonstrate that the meniscus region formed between the electrode and the convex liquid level due to the electrowetting of the catalyst plays a vital role in the CO2RR in batch cells. CO2RR in the meniscus region in batch cells exhibits similar performance with that in flow cells, and the performance disparity between these two configurations largely disappears when conducting CO2RR primarily in the meniscus region. An assembled double-sided gas diffusion electrode with a gas channel is developed to maximize the meniscus-like region, achieving a CO2RR partial current density of 640 mA/cm2geo on commercial Cu in the KHCO3 electrolyte. This performance represents the highest CO2RR activity in neutral buffered media.
缩小二氧化碳电还原中间歇式和流动式反应器配置之间的活性差距。
迄今为止,人们对各种二氧化碳质量传输模式的了解仍不全面,这阻碍了将在更容易获得的电化学批次电池中发现的催化剂转移到高性能流动电池中。在这项工作中,我们证明了由于催化剂的电润湿而在电极和凸液面之间形成的半月板区域对间歇式样品池中的 CO2RR 起着至关重要的作用。间歇式电池中半月形区域的 CO2RR 与流动式电池中的 CO2RR 表现出相似的性能,而且当 CO2RR 主要在半月形区域进行时,这两种配置之间的性能差异基本消失。我们开发了一种带有气体通道的组装式双面气体扩散电极,以最大限度地利用类半月板区域,在 KHCO3 电解液中的商用铜上实现了 640 mA/cm2geo 的 CO2RR 部分电流密度。这一性能代表了中性缓冲介质中最高的 CO2RR 活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信