Spencer A Shorkey, Yumeng Zhang, Jacqueline Sharp, Sophia Clingman, Ly Nguyen, Jianhan Chen, Min Chen
{"title":"Tracking flaviviral protease conformational dynamics by tuning single-molecule nanopore tweezers.","authors":"Spencer A Shorkey, Yumeng Zhang, Jacqueline Sharp, Sophia Clingman, Ly Nguyen, Jianhan Chen, Min Chen","doi":"10.1016/j.bpj.2024.11.017","DOIUrl":null,"url":null,"abstract":"<p><p>The flaviviral NS2B/NS3 protease is a conserved enzyme required for flavivirus replication. Its highly dynamic conformation poses major challenges but also offers opportunities for antiviral inhibition. Here, we established a nanopore tweezers-based platform to monitor NS2B/NS3 conformational dynamics in real time. Molecular simulations coupled with single-channel current recording measurements revealed that the protease could be captured in the middle of the ClyA nanopore lumen, stabilized mainly by dynamic electrostatic interactions. We designed a new Salmonella typhi ClyA nanopore with enhanced nanopore/protease interaction that can resolve the open and closed states at the single-molecule level for the first time. We demonstrated that the tailored ClyA could track the conformational transitions of the West Nile NS2B/NS3 protease and unravel the conformational energy landscape of various protease constructs through population and kinetic analysis. The new ClyA-protease platform paves a way to search for new allosteric inhibitors that target the NS2B and NS3 interface.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2024.11.017","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The flaviviral NS2B/NS3 protease is a conserved enzyme required for flavivirus replication. Its highly dynamic conformation poses major challenges but also offers opportunities for antiviral inhibition. Here, we established a nanopore tweezers-based platform to monitor NS2B/NS3 conformational dynamics in real time. Molecular simulations coupled with single-channel current recording measurements revealed that the protease could be captured in the middle of the ClyA nanopore lumen, stabilized mainly by dynamic electrostatic interactions. We designed a new Salmonella typhi ClyA nanopore with enhanced nanopore/protease interaction that can resolve the open and closed states at the single-molecule level for the first time. We demonstrated that the tailored ClyA could track the conformational transitions of the West Nile NS2B/NS3 protease and unravel the conformational energy landscape of various protease constructs through population and kinetic analysis. The new ClyA-protease platform paves a way to search for new allosteric inhibitors that target the NS2B and NS3 interface.
期刊介绍:
BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.