Wei Li, Ruiui Wang, Junhao Wang, Dafei Chai, Xiaohui Xie, Ken H H Young, Ya Cao, Yong Li, Xinfang Yu
{"title":"Lasalocid A selectively induces the degradation of MYD88 in lymphomas harboring the MYD88 L265P mutation.","authors":"Wei Li, Ruiui Wang, Junhao Wang, Dafei Chai, Xiaohui Xie, Ken H H Young, Ya Cao, Yong Li, Xinfang Yu","doi":"10.1182/blood.2024026781","DOIUrl":null,"url":null,"abstract":"<p><p>Myeloid differentiation primary response protein 88 (MYD88) is a key adaptor molecule in the signaling pathways of toll-like receptor (TLR) and interleukin-1 receptor (IL-1R). A somatic mutation resulting in a leucine-to-proline change at position 265 of the MYD88 protein (MYD88 L265P) is one of the most prevalent oncogenic mutations found in patients with hematological malignancies. In this study, we employed high-throughput screening to identify lasalocid-A as a potent small molecule that selectively inhibited the viability of lymphoma cells expressing MYD88 L265P and the associated activation of NF-κB. Further investigations using CRISPR-Cas9 genetic screening, proteomics, and biochemical assays revealed that lasalocid-A directly binds to the MYD88 L265P protein, enhancing its interaction with the E3 ligase RNF5. This interaction promotes MYD88 degradation through the ubiquitin-dependent proteasomal pathway, specifically in lymphomas with the MYD88 L265P mutation. Lasalocid-A exhibited strong antitumor efficacy in xenograft mouse models, induced disease remission in ibrutinib-resistant lymphomas, and showed synergistic activity with the BCL2 inhibitor venetoclax. This study highlights the potential of inducing MYD88 L265P degradation using small molecules, offering promising strategies for treating lymphomas that harbor the MYD88 L265P mutation.</p>","PeriodicalId":9102,"journal":{"name":"Blood","volume":" ","pages":""},"PeriodicalIF":21.0000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1182/blood.2024026781","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Myeloid differentiation primary response protein 88 (MYD88) is a key adaptor molecule in the signaling pathways of toll-like receptor (TLR) and interleukin-1 receptor (IL-1R). A somatic mutation resulting in a leucine-to-proline change at position 265 of the MYD88 protein (MYD88 L265P) is one of the most prevalent oncogenic mutations found in patients with hematological malignancies. In this study, we employed high-throughput screening to identify lasalocid-A as a potent small molecule that selectively inhibited the viability of lymphoma cells expressing MYD88 L265P and the associated activation of NF-κB. Further investigations using CRISPR-Cas9 genetic screening, proteomics, and biochemical assays revealed that lasalocid-A directly binds to the MYD88 L265P protein, enhancing its interaction with the E3 ligase RNF5. This interaction promotes MYD88 degradation through the ubiquitin-dependent proteasomal pathway, specifically in lymphomas with the MYD88 L265P mutation. Lasalocid-A exhibited strong antitumor efficacy in xenograft mouse models, induced disease remission in ibrutinib-resistant lymphomas, and showed synergistic activity with the BCL2 inhibitor venetoclax. This study highlights the potential of inducing MYD88 L265P degradation using small molecules, offering promising strategies for treating lymphomas that harbor the MYD88 L265P mutation.
期刊介绍:
Blood, the official journal of the American Society of Hematology, published online and in print, provides an international forum for the publication of original articles describing basic laboratory, translational, and clinical investigations in hematology. Primary research articles will be published under the following scientific categories: Clinical Trials and Observations; Gene Therapy; Hematopoiesis and Stem Cells; Immunobiology and Immunotherapy scope; Myeloid Neoplasia; Lymphoid Neoplasia; Phagocytes, Granulocytes and Myelopoiesis; Platelets and Thrombopoiesis; Red Cells, Iron and Erythropoiesis; Thrombosis and Hemostasis; Transfusion Medicine; Transplantation; and Vascular Biology. Papers can be listed under more than one category as appropriate.