{"title":"Sestrin2 balances mitophagy and apoptosis through the PINK1-Parkin pathway to attenuate severe acute pancreatitis.","authors":"Yuxi Yang, Yiqiu Peng, Yingying Li, Tingjuan Shi, Ning Xu, Yingyi Luan, Chenghong Yin","doi":"10.1016/j.cellsig.2024.111518","DOIUrl":null,"url":null,"abstract":"<p><p>Mitophagy serves as a mitochondrial quality control mechanism to maintain the homeostasis of mitochondria and the intracellular environment. Studies have shown that there is a close relationship between mitophagy and apoptosis. Sestrin2 (Sesn2) is a highly conserved class of stress-inducible proteins that play important roles in reducing oxidative stress damage, inflammation, and apoptosis. However, the potential mechanism of how Sesn2 regulates mitophagy and apoptosis in severe acute pancreatitis (SAP) remains unclear. In the study, RAW264.7 (macrophage cell Line) cellular inflammation model established by lipopolysaccharide (LPS) treatment as well as LPS and CAE-induced SAP mouse model (wild-type and Sen2 Knockout mouse) were used. Our study showed that LPS stimulation significantly increased the level of Sesn2 in RAW264.7 cells, Sesn2 increased mitochondrial membrane potential, decreased inflammation levels, mitochondrial superoxide levels and apoptosis, and also promoted monocyte macrophages toward the M2 anti-inflammatory phenotype, suggesting a protective effect of Sesn2 on mitochondria. Further, Sesn2 increased mitophagy and decreased apoptosis via modulating the PINK1-Parkin signaling. Meanwhile, knockout of Sesn2 exacerbated pancreatic, mitochondrial damage and inflammation in a mouse model of SAP. In addition, the protective effect of Sesn2 against SAP was shown to be associated with mitophagy conducted by the PINK1-Parkin pathway via inhibiting apoptosis. These findings reveal that Sesn2 in balancing mitochondrial autophagy and apoptosis by modulating the PINK1-Parkin signaling may present a new therapeutic strategy for the treatment of SAP.</p>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":" ","pages":"111518"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular signalling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cellsig.2024.111518","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mitophagy serves as a mitochondrial quality control mechanism to maintain the homeostasis of mitochondria and the intracellular environment. Studies have shown that there is a close relationship between mitophagy and apoptosis. Sestrin2 (Sesn2) is a highly conserved class of stress-inducible proteins that play important roles in reducing oxidative stress damage, inflammation, and apoptosis. However, the potential mechanism of how Sesn2 regulates mitophagy and apoptosis in severe acute pancreatitis (SAP) remains unclear. In the study, RAW264.7 (macrophage cell Line) cellular inflammation model established by lipopolysaccharide (LPS) treatment as well as LPS and CAE-induced SAP mouse model (wild-type and Sen2 Knockout mouse) were used. Our study showed that LPS stimulation significantly increased the level of Sesn2 in RAW264.7 cells, Sesn2 increased mitochondrial membrane potential, decreased inflammation levels, mitochondrial superoxide levels and apoptosis, and also promoted monocyte macrophages toward the M2 anti-inflammatory phenotype, suggesting a protective effect of Sesn2 on mitochondria. Further, Sesn2 increased mitophagy and decreased apoptosis via modulating the PINK1-Parkin signaling. Meanwhile, knockout of Sesn2 exacerbated pancreatic, mitochondrial damage and inflammation in a mouse model of SAP. In addition, the protective effect of Sesn2 against SAP was shown to be associated with mitophagy conducted by the PINK1-Parkin pathway via inhibiting apoptosis. These findings reveal that Sesn2 in balancing mitochondrial autophagy and apoptosis by modulating the PINK1-Parkin signaling may present a new therapeutic strategy for the treatment of SAP.
期刊介绍:
Cellular Signalling publishes original research describing fundamental and clinical findings on the mechanisms, actions and structural components of cellular signalling systems in vitro and in vivo.
Cellular Signalling aims at full length research papers defining signalling systems ranging from microorganisms to cells, tissues and higher organisms.