Development of nanostructured Cu3SnS4 thin films through annealing of the stack of precursors for photonic applications

IF 3.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Zakir Hussain, Naresh Padha, Arun Banotra
{"title":"Development of nanostructured Cu3SnS4 thin films through annealing of the stack of precursors for photonic applications","authors":"Zakir Hussain,&nbsp;Naresh Padha,&nbsp;Arun Banotra","doi":"10.1007/s11082-024-07709-5","DOIUrl":null,"url":null,"abstract":"<div><p>The stack of copper (Cu), tin (Sn), and sulfur (S) precursor layers was deposited on a Corning 2947 substrate using the thermal evaporation method under a vacuum of approximately 2 × 10<sup>–4</sup> Pa, employing the sequentially evaporated layer deposition (SELD) technique. The as-deposited stack was annealed at 623–723 K under a vacuum of approximately 2 × 10⁻<sup>1</sup> Pa to achieve the Cu<sub>3</sub>SnS<sub>4</sub> phase. The stack exhibits amorphous behaviour, while films grown between 623 and 723 K attain nanostructured Cu<sub>3</sub>SnS<sub>4</sub> (CTS) form. The influence of T<sub>A</sub> on the characteristics of the Cu<sub>3</sub>SnS<sub>4</sub> layers was investigated through structural, morphological, compositional, optical, and electrical analyses. The annealed CTS films crystallize in a tetragonal crystal system with the space group I42 m (121). The grown films exhibit granular structures, with particles synthesized at 673 K demonstrating increased size. The bandgap (E<sub>g</sub>) of the films decreases from 2.13 eV to 1.78 eV, while the absorption coefficient (<i>α</i>) ranges from 1 × 10<sup>5</sup> to 3 × 10<sup>5</sup> cm<sup>−1</sup>, as the annealing temperature (T<sub>A</sub>) increases from 623 to 723 K. At 673 K, the low resistivity of 9.37 × 10⁻<sup>3</sup> Ω-cm, high mobility of 56.4 cm<sup>2</sup>/V-s, and acceptor concentration of 1.19 × 10<sup>19</sup> cm⁻<sup>3</sup> result from the increased crystallite size, which reduces grain boundary scattering. Thus, Cu<sub>3</sub>SnS<sub>4</sub> is a promising absorber layer for thin-film solar cells due to its tunable bandgap, high optical absorption, low cost, and the use of earth-abundant elements. This study successfully advances photovoltaic technology by developing an economically viable alternative material for solar cell absorber layers, paving the way for large-scale solar cell production.</p></div>","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"56 12","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11082-024-07709-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The stack of copper (Cu), tin (Sn), and sulfur (S) precursor layers was deposited on a Corning 2947 substrate using the thermal evaporation method under a vacuum of approximately 2 × 10–4 Pa, employing the sequentially evaporated layer deposition (SELD) technique. The as-deposited stack was annealed at 623–723 K under a vacuum of approximately 2 × 10⁻1 Pa to achieve the Cu3SnS4 phase. The stack exhibits amorphous behaviour, while films grown between 623 and 723 K attain nanostructured Cu3SnS4 (CTS) form. The influence of TA on the characteristics of the Cu3SnS4 layers was investigated through structural, morphological, compositional, optical, and electrical analyses. The annealed CTS films crystallize in a tetragonal crystal system with the space group I42 m (121). The grown films exhibit granular structures, with particles synthesized at 673 K demonstrating increased size. The bandgap (Eg) of the films decreases from 2.13 eV to 1.78 eV, while the absorption coefficient (α) ranges from 1 × 105 to 3 × 105 cm−1, as the annealing temperature (TA) increases from 623 to 723 K. At 673 K, the low resistivity of 9.37 × 10⁻3 Ω-cm, high mobility of 56.4 cm2/V-s, and acceptor concentration of 1.19 × 1019 cm⁻3 result from the increased crystallite size, which reduces grain boundary scattering. Thus, Cu3SnS4 is a promising absorber layer for thin-film solar cells due to its tunable bandgap, high optical absorption, low cost, and the use of earth-abundant elements. This study successfully advances photovoltaic technology by developing an economically viable alternative material for solar cell absorber layers, paving the way for large-scale solar cell production.

通过对用于光子应用的前驱体堆栈进行退火处理,开发出纳米结构的 Cu3SnS4 薄膜
在约 2 × 10-4 Pa 的真空条件下,采用热蒸发法在康宁 2947 衬底上沉积了铜 (Cu)、锡 (Sn) 和硫 (S) 前驱体层,并采用了顺序蒸发层沉积 (SELD) 技术。在约 2 × 10-1 Pa 的真空条件下,在 623-723 K 的温度下对沉积的叠层进行退火处理,以获得 Cu3SnS4 相。叠层呈现非晶态,而在 623 至 723 K 之间生长的薄膜则呈现纳米结构的 Cu3SnS4(CTS)形态。通过结构、形态、成分、光学和电学分析,研究了 TA 对 Cu3SnS4 层特性的影响。退火后的 CTS 薄膜在空间群为 I42 m (121) 的四方晶系中结晶。生长出来的薄膜呈现颗粒状结构,在 673 K 下合成的颗粒尺寸增大。当退火温度(TA)从 623 K 升至 723 K 时,薄膜的带隙(Eg)从 2.13 eV 降至 1.78 eV,而吸收系数(α)则从 1 × 105 cm-1 升至 3 × 105 cm-1。在 673 K 时,由于晶体尺寸增大,晶界散射减少,因此电阻率较低,为 9.37 × 10-3 Ω-cm,迁移率较高,为 56.4 cm2/V-s,受体浓度为 1.19 × 1019 cm-3。因此,Cu3SnS4 因其可调带隙、高光吸收、低成本和使用地球富集元素而成为薄膜太阳能电池的一种前景广阔的吸收层。这项研究通过开发一种经济上可行的太阳能电池吸收层替代材料,成功地推动了光伏技术的发展,为太阳能电池的大规模生产铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optical and Quantum Electronics
Optical and Quantum Electronics 工程技术-工程:电子与电气
CiteScore
4.60
自引率
20.00%
发文量
810
审稿时长
3.8 months
期刊介绍: Optical and Quantum Electronics provides an international forum for the publication of original research papers, tutorial reviews and letters in such fields as optical physics, optical engineering and optoelectronics. Special issues are published on topics of current interest. Optical and Quantum Electronics is published monthly. It is concerned with the technology and physics of optical systems, components and devices, i.e., with topics such as: optical fibres; semiconductor lasers and LEDs; light detection and imaging devices; nanophotonics; photonic integration and optoelectronic integrated circuits; silicon photonics; displays; optical communications from devices to systems; materials for photonics (e.g. semiconductors, glasses, graphene); the physics and simulation of optical devices and systems; nanotechnologies in photonics (including engineered nano-structures such as photonic crystals, sub-wavelength photonic structures, metamaterials, and plasmonics); advanced quantum and optoelectronic applications (e.g. quantum computing, memory and communications, quantum sensing and quantum dots); photonic sensors and bio-sensors; Terahertz phenomena; non-linear optics and ultrafast phenomena; green photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信