Machining matters: unraveling the electrochemical behavior of Ti6AL4V dental implants in simulated biological environments

IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shaghayegh Alizadeh, Mehrdad Shahbaz, Majid Kavanlouei, Seyyed Salam Rahimi, Maryam Yaldagard
{"title":"Machining matters: unraveling the electrochemical behavior of Ti6AL4V dental implants in simulated biological environments","authors":"Shaghayegh Alizadeh,&nbsp;Mehrdad Shahbaz,&nbsp;Majid Kavanlouei,&nbsp;Seyyed Salam Rahimi,&nbsp;Maryam Yaldagard","doi":"10.1007/s10853-024-10420-1","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the impact of machining processes on the electrochemical behavior of Ti6AL4V alloy dental implants immersed in a simulated biological solution (SBF). Four distinct implant samples were crafted under varying machining conditions, and their electrochemical responses were assessed through potentiodynamic polarization (PDP) curves and electrochemical impedance spectroscopy (EIS) at room temperature. The exploration extends to the calculation of corrosion kinetics parameters via Tafel extrapolation and impedance analyses. Notably, the S750-Q0.01 sample exhibited the lowest corrosion current density (I_corr = 1.3166 µA/cm<sup>2</sup>) and the highest polarization resistance (Rp = 616 Ohm cm<sup>2</sup>), indicating superior corrosion resistance. In contrast, the S750-Q0.12 sample showed the highest dislocation density (1.037), signifying notable microstructural alterations. Electrochemical impedance results further revealed that samples machined at higher spindle speeds and lower cutting depths, such as S1000-Q0.01, exhibited higher resistance to corrosion with Rp values reaching 4396 Ohm cm<sup>2</sup>. Bioactivity analysis through Ca/P ratios demonstrated that the S1000-Q0.01 sample formed the most bioactive apatite layer with a Ca/P ratio close to hydroxyapatite standards. Phase analysis was carried out using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The outcomes revealed distinct corrosion behaviors in the SBF solution for machined implants under different conditions, signifying the significant influence of machining variations on microstructural changes and implant performance.</p></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"59 44","pages":"20796 - 20811"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-024-10420-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the impact of machining processes on the electrochemical behavior of Ti6AL4V alloy dental implants immersed in a simulated biological solution (SBF). Four distinct implant samples were crafted under varying machining conditions, and their electrochemical responses were assessed through potentiodynamic polarization (PDP) curves and electrochemical impedance spectroscopy (EIS) at room temperature. The exploration extends to the calculation of corrosion kinetics parameters via Tafel extrapolation and impedance analyses. Notably, the S750-Q0.01 sample exhibited the lowest corrosion current density (I_corr = 1.3166 µA/cm2) and the highest polarization resistance (Rp = 616 Ohm cm2), indicating superior corrosion resistance. In contrast, the S750-Q0.12 sample showed the highest dislocation density (1.037), signifying notable microstructural alterations. Electrochemical impedance results further revealed that samples machined at higher spindle speeds and lower cutting depths, such as S1000-Q0.01, exhibited higher resistance to corrosion with Rp values reaching 4396 Ohm cm2. Bioactivity analysis through Ca/P ratios demonstrated that the S1000-Q0.01 sample formed the most bioactive apatite layer with a Ca/P ratio close to hydroxyapatite standards. Phase analysis was carried out using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The outcomes revealed distinct corrosion behaviors in the SBF solution for machined implants under different conditions, signifying the significant influence of machining variations on microstructural changes and implant performance.

Abstract Image

加工问题:揭示 Ti6AL4V 牙科植入物在模拟生物环境中的电化学行为
本研究探讨了加工工艺对浸入模拟生物溶液(SBF)中的 Ti6AL4V 合金牙科植入物电化学行为的影响。在不同的加工条件下制作了四种不同的植入体样品,并在室温下通过电位极化(PDP)曲线和电化学阻抗谱(EIS)评估了它们的电化学反应。通过 Tafel 外推法和阻抗分析计算腐蚀动力学参数。值得注意的是,S750-Q0.01 样品表现出最低的腐蚀电流密度(I_corr = 1.3166 µA/cm2)和最高的极化电阻(Rp = 616 Ohm cm2),表明其具有优异的耐腐蚀性。相比之下,S750-Q0.12 样品的位错密度最高(1.037),表明微结构发生了显著变化。电化学阻抗结果进一步显示,以较高的主轴速度和较低的切削深度加工的样品(如 S1000-Q0.01)具有更高的耐腐蚀性,Rp 值达到 4396 欧姆 cm2。通过 Ca/P 比进行的生物活性分析表明,S1000-Q0.01 样品形成的磷灰石层生物活性最高,Ca/P 比接近羟基磷灰石标准。使用扫描电子显微镜(SEM)和 X 射线衍射(XRD)进行了相分析。结果表明,在不同条件下,机加工种植体在 SBF 溶液中的腐蚀行为各不相同,这表明机加工变化对微结构变化和种植体性能有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信