Effect of stabilizer agent type on the characteristics of Pd–Ni nanoparticles deposited on reduced graphene oxide as electrocatalysts for the oxygen reduction reaction
IF 3.5 3区 材料科学Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Uswatul Chasanah, Wega Trisunaryanti, Triyono, Iman Santoso, Dyah Ayu Fatmawati, Jason Purbonegoro
{"title":"Effect of stabilizer agent type on the characteristics of Pd–Ni nanoparticles deposited on reduced graphene oxide as electrocatalysts for the oxygen reduction reaction","authors":"Uswatul Chasanah, Wega Trisunaryanti, Triyono, Iman Santoso, Dyah Ayu Fatmawati, Jason Purbonegoro","doi":"10.1007/s10853-024-10407-y","DOIUrl":null,"url":null,"abstract":"<div><p>With the scarcity of platinum, Pd–Ni impregnated on reduced graphene oxide as an alternative has been synthesized and characterized. This research has the aim of investigating the effects of adding stabilizer agents to metallic-rGO as oxygen reduction reaction catalysts. The metal-rGO catalyst without stabilizer revealed that Pd-rGO had the highest surface area and conductivity of 52.39 m<sup>2</sup> g<sup>−1</sup> and 18.30 S m<sup>−1</sup>, while the H–Pd–Ni-rGO catalyst had the surface area and conductivity of 18.80 m<sup>2</sup> g<sup>−1</sup> and 8.28 S m<sup>−1</sup>. These two values together have an impact on the ORR capacity to feed water and export electrons via catalysis and oxygen adsorption, thus impacting the ORR capacity to emigrate electrons as well as its capacity to produce water through oxygen adsorption and catalysis. Although Pd-rGO has higher surface area, conductivity, and n transfer value, H–Pd–Ni-rGO catalyst is the best electrocatalyst due to more stability provided by the HMTA stabilizer by retaining the energy density with the same applied potential even after 2000 cycles, indicating H–Pd–Ni-rGO catalyst is better for long-term use.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"59 44","pages":"20593 - 20605"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-024-10407-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the scarcity of platinum, Pd–Ni impregnated on reduced graphene oxide as an alternative has been synthesized and characterized. This research has the aim of investigating the effects of adding stabilizer agents to metallic-rGO as oxygen reduction reaction catalysts. The metal-rGO catalyst without stabilizer revealed that Pd-rGO had the highest surface area and conductivity of 52.39 m2 g−1 and 18.30 S m−1, while the H–Pd–Ni-rGO catalyst had the surface area and conductivity of 18.80 m2 g−1 and 8.28 S m−1. These two values together have an impact on the ORR capacity to feed water and export electrons via catalysis and oxygen adsorption, thus impacting the ORR capacity to emigrate electrons as well as its capacity to produce water through oxygen adsorption and catalysis. Although Pd-rGO has higher surface area, conductivity, and n transfer value, H–Pd–Ni-rGO catalyst is the best electrocatalyst due to more stability provided by the HMTA stabilizer by retaining the energy density with the same applied potential even after 2000 cycles, indicating H–Pd–Ni-rGO catalyst is better for long-term use.
期刊介绍:
The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.