Self-standing TiO₂@CC@PANI core–shell nanowires as flexibles lithium-ion battery anodes

IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xinyi Li, Xiangyu Yin, Zhen Liu, Hui Li, Meili Qi, Xin Mu, Jiwen Cui
{"title":"Self-standing TiO₂@CC@PANI core–shell nanowires as flexibles lithium-ion battery anodes","authors":"Xinyi Li,&nbsp;Xiangyu Yin,&nbsp;Zhen Liu,&nbsp;Hui Li,&nbsp;Meili Qi,&nbsp;Xin Mu,&nbsp;Jiwen Cui","doi":"10.1007/s10853-024-10401-4","DOIUrl":null,"url":null,"abstract":"<div><p>A novel approach for improving lithium-ion storage involves the fabrication of three-dimensional TiO₂@CC@PANI core–shell electrodes. For the hydrothermal growth of TiO₂ nanowires, carbon cloth (CC) is used as a flexible, conductive base. The nanowires are then coated with polyaniline (PANI) through electrodeposition. This design takes advantage of the carbon substrate’s high conductivity and the structural flexibility of TiO₂ nanowires. The PANI coating provides important active sites for ion storage and reduces changes in volume during lithiation and delithiation. An analysis of the electrode’s electrochemical performance shows that it has a specific capacity of 297.7 mAh g⁻<sup>1</sup> after 100 cycles at a current density of 100 mA g⁻<sup>1</sup>. This is a lot more than the 30.8 mAh g⁻<sup>1</sup> of TiO₂@CC alone, and the electrode has an initial Coulombic efficiency of 85.2%. Electrochemical impedance spectroscopy indicates superior lithium-ion diffusivity in the TiO₂@CC@PANI structure. Rate performance tests confirm the high structural stability of the TiO₂@CC@PANI electrode under various charge/discharge conditions. These findings demonstrate the enhanced capacity and structural integrity of lithium-ion batteries utilizing TiO₂@CC@PANI anodes, underscoring their potential for high current–density applications.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"59 44","pages":"20657 - 20670"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-024-10401-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A novel approach for improving lithium-ion storage involves the fabrication of three-dimensional TiO₂@CC@PANI core–shell electrodes. For the hydrothermal growth of TiO₂ nanowires, carbon cloth (CC) is used as a flexible, conductive base. The nanowires are then coated with polyaniline (PANI) through electrodeposition. This design takes advantage of the carbon substrate’s high conductivity and the structural flexibility of TiO₂ nanowires. The PANI coating provides important active sites for ion storage and reduces changes in volume during lithiation and delithiation. An analysis of the electrode’s electrochemical performance shows that it has a specific capacity of 297.7 mAh g⁻1 after 100 cycles at a current density of 100 mA g⁻1. This is a lot more than the 30.8 mAh g⁻1 of TiO₂@CC alone, and the electrode has an initial Coulombic efficiency of 85.2%. Electrochemical impedance spectroscopy indicates superior lithium-ion diffusivity in the TiO₂@CC@PANI structure. Rate performance tests confirm the high structural stability of the TiO₂@CC@PANI electrode under various charge/discharge conditions. These findings demonstrate the enhanced capacity and structural integrity of lithium-ion batteries utilizing TiO₂@CC@PANI anodes, underscoring their potential for high current–density applications.

Graphical abstract

作为柔性锂离子电池阳极的自立型 TiO₂@CC@PANI 核壳纳米线
改进锂离子存储的一种新方法是制造三维 TiO₂@CC@PANI 核壳电极。在水热法生长 TiO₂ 纳米线时,使用碳布 (CC) 作为柔性导电基底。然后通过电沉积在纳米线上镀上聚苯胺 (PANI)。这种设计利用了碳基底的高导电性和 TiO₂ 纳米线的结构灵活性。PANI 涂层为离子存储提供了重要的活性位点,并减少了石化和脱石过程中的体积变化。对电极电化学性能的分析表明,在电流密度为 100 mA g-1 的条件下循环 100 次后,其比容量为 297.7 mAh g-1。这比单独使用 TiO₂@CC 的 30.8 mAh g-1 高出很多,而且该电极的初始库仑效率为 85.2%。电化学阻抗谱显示,TiO₂@CC@PANI 结构具有卓越的锂离子扩散性。速率性能测试证实,在各种充放电条件下,TiO₂@CC@PANI 电极具有很高的结构稳定性。这些研究结果表明,使用 TiO₂@CC@PANI 阳极的锂离子电池的容量和结构完整性得到了增强,凸显了其在高电流密度应用方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信