NavTr: Object-Goal Navigation With Learnable Transformer Queries

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Qiuyu Mao;Jikai Wang;Meng Xu;Zonghai Chen
{"title":"NavTr: Object-Goal Navigation With Learnable Transformer Queries","authors":"Qiuyu Mao;Jikai Wang;Meng Xu;Zonghai Chen","doi":"10.1109/LRA.2024.3497718","DOIUrl":null,"url":null,"abstract":"This letter introduces \n<bold>Nav</b>\nigation \n<bold>Tr</b>\nansformer (NavTr), a novel framework for object-goal navigation using Transformer queries to enhance the learning and representation of environment states. By integrating semantic information, object positions, and neighborhood information, NavTr creates a unified, comprehensive, and extensible state representation for the object-goal navigating task. In the framework, the Transformer queries implicitly learn inter-object relationships, which facilitates high-level understanding of the environment. Additionally, NavTr implements target-oriented supervisory signals, such as rotation rewards and spatial loss, which improve exploration efficiency in the reinforcement learning framework. NavTr outperforms popular graph-based and Attention-based methods by a large margin in terms of success rate (SR) and success weighted by path length (SPL). Extensive experiments on the AI2-THOR dataset demonstrate the effectiveness of our approach.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"9 12","pages":"11738-11745"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10757356/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This letter introduces Nav igation Tr ansformer (NavTr), a novel framework for object-goal navigation using Transformer queries to enhance the learning and representation of environment states. By integrating semantic information, object positions, and neighborhood information, NavTr creates a unified, comprehensive, and extensible state representation for the object-goal navigating task. In the framework, the Transformer queries implicitly learn inter-object relationships, which facilitates high-level understanding of the environment. Additionally, NavTr implements target-oriented supervisory signals, such as rotation rewards and spatial loss, which improve exploration efficiency in the reinforcement learning framework. NavTr outperforms popular graph-based and Attention-based methods by a large margin in terms of success rate (SR) and success weighted by path length (SPL). Extensive experiments on the AI2-THOR dataset demonstrate the effectiveness of our approach.
NavTr:利用可学习的变换器查询进行对象-目标导航
这封信介绍了导航变换器(Navigation Transformer,NavTr),它是一个新颖的目标导航框架,使用变换器查询来增强环境状态的学习和表示。通过整合语义信息、对象位置和邻域信息,NavTr 为对象目标导航任务创建了统一、全面和可扩展的状态表示。在该框架中,变换器查询会隐式地学习对象间的关系,从而促进对环境的高层次理解。此外,NavTr 还实现了面向目标的监督信号,如旋转奖励和空间损失,从而提高了强化学习框架中的探索效率。在成功率(SR)和路径长度加权成功率(SPL)方面,NavTr 远远优于流行的基于图的方法和基于注意力的方法。在 AI2-THOR 数据集上进行的大量实验证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信