Micellar Transfer Hydrogenation Catalysis in Water with Monocarbonyl Ruthenium(II)-poly(vinylphosphonate)-Containing Polymers: Achieving Reduction of Biomass-Derived Aldehydes
IF 4.4 2区 化学Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Denise Lovison, Philipp Weingarten, Alexandra Sebeschuk, Bernhard Rieger* and Angela Casini*,
{"title":"Micellar Transfer Hydrogenation Catalysis in Water with Monocarbonyl Ruthenium(II)-poly(vinylphosphonate)-Containing Polymers: Achieving Reduction of Biomass-Derived Aldehydes","authors":"Denise Lovison, Philipp Weingarten, Alexandra Sebeschuk, Bernhard Rieger* and Angela Casini*, ","doi":"10.1021/acsapm.4c0276210.1021/acsapm.4c02762","DOIUrl":null,"url":null,"abstract":"<p >With the aim to build a supramolecular organometallic catalyst for transfer hydrogenation (TH) reactions of hydrophobic substrates, micellar architectures of different sizes were obtained using amphiphilic diblock copolymers (BCPs) tethered to a Ru(II) monocarbonyl complex. An end-group functionalization strategy was employed to incorporate a bipyridyl end-group, used to further coordinate the cationic ruthenium fragment, to amphiphilic poly(2-vinylpyridine)-<i>b</i>-poly(diethyl vinylphosphonate). Owing to their amphiphilic character, the polymers form spherical micelles in water, which were characterized by different spectroscopic and analytical methods at different pH values and temperatures. The most suitable core–shell micellar system could level the catalytic activity of the ruthenium complex toward hydrophobic and biomass-derived aldehydes, which could be successfully reduced to the corresponding alcohols in water using potassium formate as a hydride source. Depending on the substrate’s hydrophobicity and concentration, the catalytic activity varied significantly. In addition, the polymer’s properties hardly changed during catalysis, facilitating effective recycling until the third catalytic cycle.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"6 22","pages":"13855–13864 13855–13864"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsapm.4c02762","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsapm.4c02762","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the aim to build a supramolecular organometallic catalyst for transfer hydrogenation (TH) reactions of hydrophobic substrates, micellar architectures of different sizes were obtained using amphiphilic diblock copolymers (BCPs) tethered to a Ru(II) monocarbonyl complex. An end-group functionalization strategy was employed to incorporate a bipyridyl end-group, used to further coordinate the cationic ruthenium fragment, to amphiphilic poly(2-vinylpyridine)-b-poly(diethyl vinylphosphonate). Owing to their amphiphilic character, the polymers form spherical micelles in water, which were characterized by different spectroscopic and analytical methods at different pH values and temperatures. The most suitable core–shell micellar system could level the catalytic activity of the ruthenium complex toward hydrophobic and biomass-derived aldehydes, which could be successfully reduced to the corresponding alcohols in water using potassium formate as a hydride source. Depending on the substrate’s hydrophobicity and concentration, the catalytic activity varied significantly. In addition, the polymer’s properties hardly changed during catalysis, facilitating effective recycling until the third catalytic cycle.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.