Degradation of hemihydrate phosphogypsum-based backfill in underground mining: Mechanical and microstructural insights on the effects of pH and temperature of mine water
{"title":"Degradation of hemihydrate phosphogypsum-based backfill in underground mining: Mechanical and microstructural insights on the effects of pH and temperature of mine water","authors":"Zhikai Wang, Yiming Wang, Giovanna Antonella Dino, Lianfu Zhang, Zhuen Ruan, Minzhe Zhang, Jianqiu Li, Aixiang Wu","doi":"10.1016/j.psep.2024.11.003","DOIUrl":null,"url":null,"abstract":"The mechanical properties of hemihydrate phosphogypsum-based backfill (HPG-backfill) are significantly influenced by the temperature and pH of mine water (MW), impacting the stability of underground mining operations. This study evaluates the effects of MW at different temperatures (20°C, 30°C, and 40°C) and pH levels (3, 5, and 7) on HPG-backfill’s mechanical strength. A comprehensive analysis, including uniaxial compressive strength (UCS) testing, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric and differential thermogravimetric (TG-DTG), and nuclear magnetic resonance (NMR), was employed to explore degradation mechanisms. The results indicate a significant decline in the mechanical performance of HPG-backfill when exposed to MW. This degradation becomes particularly pronounced under more acidic conditions and at elevated temperatures. A polynomial relationship between strength and pH, and a linear correlation with temperature, were identified. Interaction effects between temperature and pH on 28-day strength degradation were observed, diminishing with increased temperature or decreased pH. Gray relational analysis highlights pH as a more critical factor than temperature in degradation. Strength degradation is primarily attributed to gypsum dissolution and the pressure induced by recrystallization, which leads to the formation of fatigue cracks. Additionally, acidic conditions accelerate premature crystallization, altering both the crystal morphology and the pore structure. These insights advance the understanding of HPG-backfill degradation, guiding the developing of more resilient backfill materials for extreme mining environments.","PeriodicalId":20743,"journal":{"name":"Process Safety and Environmental Protection","volume":"255 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety and Environmental Protection","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.psep.2024.11.003","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The mechanical properties of hemihydrate phosphogypsum-based backfill (HPG-backfill) are significantly influenced by the temperature and pH of mine water (MW), impacting the stability of underground mining operations. This study evaluates the effects of MW at different temperatures (20°C, 30°C, and 40°C) and pH levels (3, 5, and 7) on HPG-backfill’s mechanical strength. A comprehensive analysis, including uniaxial compressive strength (UCS) testing, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric and differential thermogravimetric (TG-DTG), and nuclear magnetic resonance (NMR), was employed to explore degradation mechanisms. The results indicate a significant decline in the mechanical performance of HPG-backfill when exposed to MW. This degradation becomes particularly pronounced under more acidic conditions and at elevated temperatures. A polynomial relationship between strength and pH, and a linear correlation with temperature, were identified. Interaction effects between temperature and pH on 28-day strength degradation were observed, diminishing with increased temperature or decreased pH. Gray relational analysis highlights pH as a more critical factor than temperature in degradation. Strength degradation is primarily attributed to gypsum dissolution and the pressure induced by recrystallization, which leads to the formation of fatigue cracks. Additionally, acidic conditions accelerate premature crystallization, altering both the crystal morphology and the pore structure. These insights advance the understanding of HPG-backfill degradation, guiding the developing of more resilient backfill materials for extreme mining environments.
期刊介绍:
The Process Safety and Environmental Protection (PSEP) journal is a leading international publication that focuses on the publication of high-quality, original research papers in the field of engineering, specifically those related to the safety of industrial processes and environmental protection. The journal encourages submissions that present new developments in safety and environmental aspects, particularly those that show how research findings can be applied in process engineering design and practice.
PSEP is particularly interested in research that brings fresh perspectives to established engineering principles, identifies unsolved problems, or suggests directions for future research. The journal also values contributions that push the boundaries of traditional engineering and welcomes multidisciplinary papers.
PSEP's articles are abstracted and indexed by a range of databases and services, which helps to ensure that the journal's research is accessible and recognized in the academic and professional communities. These databases include ANTE, Chemical Abstracts, Chemical Hazards in Industry, Current Contents, Elsevier Engineering Information database, Pascal Francis, Web of Science, Scopus, Engineering Information Database EnCompass LIT (Elsevier), and INSPEC. This wide coverage facilitates the dissemination of the journal's content to a global audience interested in process safety and environmental engineering.