Shuo Ma, Panmei Liu, Liming Yu, Yuan Huang, Zumin Wang
{"title":"Comparative study of wet oxidation in amorphous and crystalline Zr-Cu-Al: The effect of structural order","authors":"Shuo Ma, Panmei Liu, Liming Yu, Yuan Huang, Zumin Wang","doi":"10.1016/j.jallcom.2024.177727","DOIUrl":null,"url":null,"abstract":"The structural order significantly influences the oxidation resistance of alloys, but its effect on oxidation behaviors in humid environments remains underexplored. Herein, a comprehensive investigation of the effect of structural order on the wet oxidation of alloys was conducted using amorphous and crystalline Zr-Cu-Al alloys as model systems. The amorphous Zr-Cu-Al alloy exhibits stronger resistance to wet oxidation than its crystalline counterpart, which can be ascribed to the higher activation barriers associated with dense and disordered atomic structures of amorphous (Zr, Al)-oxide and substrate. An amorphous Cu-rich structure is observed in the amorphous alloy, whereas internal oxidation occurs in the crystalline alloy with a resulting multilayered Cu-rich structure (i.e. intermetallic compounds). This study highlights the critical role of structural order in oxidation resistance, providing new insights into the design strategies of alloys served in humid environments.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"59 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2024.177727","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The structural order significantly influences the oxidation resistance of alloys, but its effect on oxidation behaviors in humid environments remains underexplored. Herein, a comprehensive investigation of the effect of structural order on the wet oxidation of alloys was conducted using amorphous and crystalline Zr-Cu-Al alloys as model systems. The amorphous Zr-Cu-Al alloy exhibits stronger resistance to wet oxidation than its crystalline counterpart, which can be ascribed to the higher activation barriers associated with dense and disordered atomic structures of amorphous (Zr, Al)-oxide and substrate. An amorphous Cu-rich structure is observed in the amorphous alloy, whereas internal oxidation occurs in the crystalline alloy with a resulting multilayered Cu-rich structure (i.e. intermetallic compounds). This study highlights the critical role of structural order in oxidation resistance, providing new insights into the design strategies of alloys served in humid environments.
期刊介绍:
The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.