Panzhen Li, Zhe Huang, Jin Yang, Chenhe Zhang, Siwei Tang, Yunzhu Ma, Wensheng Liu
{"title":"Container-Free Microfluidic Chemical Reduction for Synthesizing Ultrafine Silver Powder and Fabricating Silver Paste","authors":"Panzhen Li, Zhe Huang, Jin Yang, Chenhe Zhang, Siwei Tang, Yunzhu Ma, Wensheng Liu","doi":"10.1016/j.jallcom.2024.177733","DOIUrl":null,"url":null,"abstract":"As an important interconnecting material for solar cells, photovoltaic silver paste is in high demand. The silver powder, used as the conductive phase, greatly influences the conductivity of the paste. In this study, microfluidic technology was employed to achieve rapid and uniform mixing at the molecular level and the influence of microfluidic process conditions and reaction rates on silver powder morphology was investigated. Particularly, microfluidic technology can prevent the heterogeneous nucleation on wall of container. Using a 1.5<!-- --> <!-- -->mol/L ascorbic acid concentration, spherical silver powder measuring 0.70–0.80 μm was produced through the convection reaction of two microflows at a 10<!-- --> <!-- -->mL/min flow rate. This silver powder exhibited better shape regularization compared to that produced by macromixing. When mixed with micron flake silver powder in a 1:1 mass ratio and sintered at 150℃ for 45<!-- --> <!-- -->min, the microfluidically prepared silver powder achieved a resistivity of 2.72 × 10<sup>−5</sup> Ω.cm. This work introduces a new approach for preparing submicron silver powder, which has important applications in the solar cell silver paste field.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"24 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2024.177733","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
As an important interconnecting material for solar cells, photovoltaic silver paste is in high demand. The silver powder, used as the conductive phase, greatly influences the conductivity of the paste. In this study, microfluidic technology was employed to achieve rapid and uniform mixing at the molecular level and the influence of microfluidic process conditions and reaction rates on silver powder morphology was investigated. Particularly, microfluidic technology can prevent the heterogeneous nucleation on wall of container. Using a 1.5 mol/L ascorbic acid concentration, spherical silver powder measuring 0.70–0.80 μm was produced through the convection reaction of two microflows at a 10 mL/min flow rate. This silver powder exhibited better shape regularization compared to that produced by macromixing. When mixed with micron flake silver powder in a 1:1 mass ratio and sintered at 150℃ for 45 min, the microfluidically prepared silver powder achieved a resistivity of 2.72 × 10−5 Ω.cm. This work introduces a new approach for preparing submicron silver powder, which has important applications in the solar cell silver paste field.
期刊介绍:
The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.