Association between microplastics in human amniotic fluid and pregnancy outcomes: Detection and characterization using Raman spectroscopy and pyrolysis GC/MS
Jiaqi Tian , Liyang Liang , Qiang Li , Ning Li , Xiaodan Zhu , Lin Zhang
{"title":"Association between microplastics in human amniotic fluid and pregnancy outcomes: Detection and characterization using Raman spectroscopy and pyrolysis GC/MS","authors":"Jiaqi Tian , Liyang Liang , Qiang Li , Ning Li , Xiaodan Zhu , Lin Zhang","doi":"10.1016/j.jhazmat.2024.136637","DOIUrl":null,"url":null,"abstract":"<div><div>Microplastic contamination has emerged as a global environmental concern, while the limitation of single-technique identification methods in complex biological matrices calls for multi-analytical approaches for accurate microplastic detection. This study pioneers a dual-method approach, combining Raman spectroscopy and pyrolysis gas chromatography-mass spectrometry (Py-GC/MS), to investigate microplastics in human amniotic fluid. In total, samples from 48 pregnant women were collected and analyzed under stringent quality control measures, then Raman spectroscopy and Py-GC/MS were employed for comprehensive polymer identification and verification. Our analysis revealed 6 distinct microplastic polymer types in 39 subjects, with an average particle size of 3.05 ± 1.05 µm, polytetrafluoroethylene (PTFE, 31.25 %), polystyrene (PS, 20.83 %), and acrylonitrile-butadiene-styrene (ABS, 14.58 %) being the most prevalent. Py-GC/MS analysis corroborated the Raman spectroscopy findings, identifying pyrolytic markers such as fluoroethylene for PTFE and styrene for PS. However, no significant associations were found between microplastic exposure and immediate adverse pregnancy outcomes. This study, for the first time, utilizes a dual-method approach combining Raman spectroscopy and Py-GC/MS to conclusively demonstrate the presence of diverse microplastics in human amniotic fluid, which underscores the need for larger-scale, longitudinal investigations to elucidate the potential long-term health implications of microplastic exposure.</div></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"482 ","pages":"Article 136637"},"PeriodicalIF":12.2000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389424032187","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastic contamination has emerged as a global environmental concern, while the limitation of single-technique identification methods in complex biological matrices calls for multi-analytical approaches for accurate microplastic detection. This study pioneers a dual-method approach, combining Raman spectroscopy and pyrolysis gas chromatography-mass spectrometry (Py-GC/MS), to investigate microplastics in human amniotic fluid. In total, samples from 48 pregnant women were collected and analyzed under stringent quality control measures, then Raman spectroscopy and Py-GC/MS were employed for comprehensive polymer identification and verification. Our analysis revealed 6 distinct microplastic polymer types in 39 subjects, with an average particle size of 3.05 ± 1.05 µm, polytetrafluoroethylene (PTFE, 31.25 %), polystyrene (PS, 20.83 %), and acrylonitrile-butadiene-styrene (ABS, 14.58 %) being the most prevalent. Py-GC/MS analysis corroborated the Raman spectroscopy findings, identifying pyrolytic markers such as fluoroethylene for PTFE and styrene for PS. However, no significant associations were found between microplastic exposure and immediate adverse pregnancy outcomes. This study, for the first time, utilizes a dual-method approach combining Raman spectroscopy and Py-GC/MS to conclusively demonstrate the presence of diverse microplastics in human amniotic fluid, which underscores the need for larger-scale, longitudinal investigations to elucidate the potential long-term health implications of microplastic exposure.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.