Matrix stiffness drives drop like nuclear deformation and lamin A/C tension-dependent YAP nuclear localization

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ting-Ching Wang, Samere Abolghasemzade, Brendan P. McKee, Ishita Singh, Kavya Pendyala, Mohammad Mohajeri, Hailee Patel, Aakansha Shaji, Anna L. Kersey, Kajol Harsh, Simran Kaur, Christina R. Dollahon, Sasanka Chukkapalli, Pushkar P. Lele, Daniel E. Conway, Akhilesh K. Gaharwar, Richard B. Dickinson, Tanmay P. Lele
{"title":"Matrix stiffness drives drop like nuclear deformation and lamin A/C tension-dependent YAP nuclear localization","authors":"Ting-Ching Wang, Samere Abolghasemzade, Brendan P. McKee, Ishita Singh, Kavya Pendyala, Mohammad Mohajeri, Hailee Patel, Aakansha Shaji, Anna L. Kersey, Kajol Harsh, Simran Kaur, Christina R. Dollahon, Sasanka Chukkapalli, Pushkar P. Lele, Daniel E. Conway, Akhilesh K. Gaharwar, Richard B. Dickinson, Tanmay P. Lele","doi":"10.1038/s41467-024-54577-4","DOIUrl":null,"url":null,"abstract":"<p>Extracellular matrix (ECM) stiffness influences cancer cell fate by altering gene expression. Previous studies suggest that stiffness-induced nuclear deformation may regulate gene expression through YAP nuclear localization. We investigated the role of the nuclear lamina in this process. We show that the nuclear lamina exhibits mechanical threshold behavior: once unwrinkled, the nuclear lamina is inextensible. A computational model predicts that the unwrinkled lamina is under tension, which is confirmed using a lamin tension sensor. Laminar unwrinkling is caused by nuclear flattening during cell spreading on stiff ECM. Knockdown of lamin A/C eliminates nuclear surface tension and decreases nuclear YAP localization. These findings show that nuclear deformation in cells conforms to the nuclear drop model and reveal a role for lamin A/C tension in controlling YAP localization in cancer cells.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"5 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54577-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Extracellular matrix (ECM) stiffness influences cancer cell fate by altering gene expression. Previous studies suggest that stiffness-induced nuclear deformation may regulate gene expression through YAP nuclear localization. We investigated the role of the nuclear lamina in this process. We show that the nuclear lamina exhibits mechanical threshold behavior: once unwrinkled, the nuclear lamina is inextensible. A computational model predicts that the unwrinkled lamina is under tension, which is confirmed using a lamin tension sensor. Laminar unwrinkling is caused by nuclear flattening during cell spreading on stiff ECM. Knockdown of lamin A/C eliminates nuclear surface tension and decreases nuclear YAP localization. These findings show that nuclear deformation in cells conforms to the nuclear drop model and reveal a role for lamin A/C tension in controlling YAP localization in cancer cells.

Abstract Image

基质刚度驱动水滴状核变形和层片A/C张力依赖性YAP核定位
细胞外基质(ECM)的硬度通过改变基因表达影响癌细胞的命运。以前的研究表明,僵化引起的核变形可能通过 YAP 核定位调节基因表达。我们研究了核薄层在这一过程中的作用。我们发现核薄层表现出机械阈值行为:一旦没有皱褶,核薄层就无法拉伸。计算模型预测,未起皱的薄层处于拉伸状态,这一点通过薄层拉伸传感器得到了证实。层状不起皱是细胞在坚硬的 ECM 上扩散时核扁平化造成的。敲除层片 A/C可消除核表面张力并减少核 YAP 定位。这些研究结果表明,细胞核变形符合核下降模型,并揭示了层片A/C张力在控制癌细胞YAP定位中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信