{"title":"24-mA/mm metal–semiconductor field-effect transistor based on Ge-doped α-Ga2O3 grown by mist chemical vapor deposition","authors":"Takeru Wakamatsu, Yuki Isobe, Hitoshi Takane, Kentaro Kaneko, Katsuhisa Tanaka","doi":"10.1063/5.0231630","DOIUrl":null,"url":null,"abstract":"In this study, we developed a metal–semiconductor field-effect transistor (MESFET) using a Ge-doped α-Ga2O3 channel layer grown via mist chemical vapor deposition (CVD). As a buffer layer, Fe-doped α-Ga2O3 was deposited between the Ge-doped α-Ga2O3 channel layer and the m-plane sapphire substrate to reduce the influence of threading dislocations and suppress current leakage. Furthermore, an n+ contact layer heavily doped with Ge was deposited on the channel layer to reduce the contact resistance. The carrier concentration and Hall mobility of the channel layer were 2.1 × 1017 cm−3 and 44 cm2 V−1 s−1, respectively. The transfer length method indicates that the contact between the metal and the n+ layer exhibits Ohmic behavior with a resistance as low as 16 Ω mm. The MESFET exhibited a maximum current of 24 mA/mm and an on-resistance of 587 Ω mm at VGS = 2 V. The Ion/Ioff ratio exceeded 109. The breakdown voltage was 364 V, the leakage current between the drain and the source was below 10−5 mA/mm, and the power figure of merit was 1.2 MW/cm2. These results demonstrate that the mist CVD-derived Ge-doped α-Ga2O3 can give rise to a MESFET with good performance.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"2 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0231630","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we developed a metal–semiconductor field-effect transistor (MESFET) using a Ge-doped α-Ga2O3 channel layer grown via mist chemical vapor deposition (CVD). As a buffer layer, Fe-doped α-Ga2O3 was deposited between the Ge-doped α-Ga2O3 channel layer and the m-plane sapphire substrate to reduce the influence of threading dislocations and suppress current leakage. Furthermore, an n+ contact layer heavily doped with Ge was deposited on the channel layer to reduce the contact resistance. The carrier concentration and Hall mobility of the channel layer were 2.1 × 1017 cm−3 and 44 cm2 V−1 s−1, respectively. The transfer length method indicates that the contact between the metal and the n+ layer exhibits Ohmic behavior with a resistance as low as 16 Ω mm. The MESFET exhibited a maximum current of 24 mA/mm and an on-resistance of 587 Ω mm at VGS = 2 V. The Ion/Ioff ratio exceeded 109. The breakdown voltage was 364 V, the leakage current between the drain and the source was below 10−5 mA/mm, and the power figure of merit was 1.2 MW/cm2. These results demonstrate that the mist CVD-derived Ge-doped α-Ga2O3 can give rise to a MESFET with good performance.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.