The impact of the design of MoO3 nanorods on the bactericidal performance

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Raúl Castellanos-Espinoza, Gabriela González-Uribe, Noé Arjona, Claramaría Rodríguez-González, Carlos Manuel Ramos-Castillo, Lorena Álvarez-Contreras, Gabriel Luna-Barcenas, Beatriz Liliana España-Sánchez, Minerva Guerra-Balcázar
{"title":"The impact of the design of MoO3 nanorods on the bactericidal performance","authors":"Raúl Castellanos-Espinoza, Gabriela González-Uribe, Noé Arjona, Claramaría Rodríguez-González, Carlos Manuel Ramos-Castillo, Lorena Álvarez-Contreras, Gabriel Luna-Barcenas, Beatriz Liliana España-Sánchez, Minerva Guerra-Balcázar","doi":"10.1016/j.apsusc.2024.161889","DOIUrl":null,"url":null,"abstract":"Our work evaluates the impact of crystallization rate during the synthesis of α-MoO<sub>3</sub> nanorods and their bactericidal performance against Gram (+) <em>S. aureus</em> and Gram (−) <em>E. coli</em>. For this purpose, α-MoO<sub>3</sub> nanorods were synthesized by varying the crystallization times to 12, 24, and 48 h. XRD patterns reveal that crystallization time changes crystal size. The growth of α-MoO<sub>3</sub> does not show chemical modifications. However, SEM and TEM reveal the characteristic nanorods morphology, where the crystallization times affect the diameter. Crystal growth also changes the atomic percentage of Mo/O, which is determined by XPS. The above was reflected in the antibacterial performance of α-MoO<sub>3</sub>, evaluated at different nanoparticle concentrations (0.5–4 mg/mL). The α-MoO<sub>3</sub> is an efficacious antibacterial for both pathogens by the enhanced crystal size, with higher bactericidal performance against Gram-positive bacteria, indicating that the rod architecture improves their interaction through electrostatic attraction with the peptidoglycan structure of <em>S. aureus</em> bacteria. In addition, electrochemical measurements indicate that the electroactive area of α-MoO<sub>3</sub> plays a key role in the nanoparticle/bacteria interaction. As a result, the intrinsic characteristics of α-MoO<sub>3</sub> nanorods, including crystal size, morphology, nanorod diameter, oxygen vacancies, and EASA, influence the antibacterial activity, generating materials with potential biomedical applications.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"76 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2024.161889","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Our work evaluates the impact of crystallization rate during the synthesis of α-MoO3 nanorods and their bactericidal performance against Gram (+) S. aureus and Gram (−) E. coli. For this purpose, α-MoO3 nanorods were synthesized by varying the crystallization times to 12, 24, and 48 h. XRD patterns reveal that crystallization time changes crystal size. The growth of α-MoO3 does not show chemical modifications. However, SEM and TEM reveal the characteristic nanorods morphology, where the crystallization times affect the diameter. Crystal growth also changes the atomic percentage of Mo/O, which is determined by XPS. The above was reflected in the antibacterial performance of α-MoO3, evaluated at different nanoparticle concentrations (0.5–4 mg/mL). The α-MoO3 is an efficacious antibacterial for both pathogens by the enhanced crystal size, with higher bactericidal performance against Gram-positive bacteria, indicating that the rod architecture improves their interaction through electrostatic attraction with the peptidoglycan structure of S. aureus bacteria. In addition, electrochemical measurements indicate that the electroactive area of α-MoO3 plays a key role in the nanoparticle/bacteria interaction. As a result, the intrinsic characteristics of α-MoO3 nanorods, including crystal size, morphology, nanorod diameter, oxygen vacancies, and EASA, influence the antibacterial activity, generating materials with potential biomedical applications.

Abstract Image

MoO3 纳米棒的设计对杀菌性能的影响
我们的研究评估了α-MoO3 纳米棒合成过程中结晶速率的影响及其对革兰氏(+)金黄色葡萄球菌和革兰氏(-)大肠杆菌的杀菌性能。为此,α-MoO3 纳米棒的合成结晶时间分别为 12、24 和 48 小时。XRD 图谱显示,结晶时间会改变晶体尺寸。α-MoO3在生长过程中没有出现化学变化。然而,扫描电子显微镜(SEM)和透射电子显微镜(TEM)显示了纳米棒的特征形态,其中结晶时间会影响直径。晶体生长也会改变 Mo/O 的原子百分比,这可通过 XPS 测定。上述情况反映在不同纳米粒子浓度(0.5-4 毫克/毫升)下α-MoO3 的抗菌性能评估中。由于晶体尺寸增大,α-MoO3 对这两种病原体都有很好的抗菌效果,对革兰氏阳性细菌的杀菌性能更高,这表明棒状结构通过与金黄色葡萄球菌肽聚糖结构的静电吸引改善了它们之间的相互作用。此外,电化学测量结果表明,α-MoO3 的电活性区在纳米粒子与细菌的相互作用中起着关键作用。因此,α-MoO3 纳米棒的内在特性,包括晶体尺寸、形态、纳米棒直径、氧空位和 EASA,都会影响其抗菌活性,从而产生具有潜在生物医学应用价值的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信