Parameterization and quantification of two key operando physio-chemical descriptors for water-assisted electro-catalytic organic oxidation

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Bailin Tian, Fangyuan Wang, Pan Ran, Luhan Dai, Yang Lv, Yuxia Sun, Zhangyan Mu, Yamei Sun, Lingyu Tang, William A. Goddard, Mengning Ding
{"title":"Parameterization and quantification of two key operando physio-chemical descriptors for water-assisted electro-catalytic organic oxidation","authors":"Bailin Tian, Fangyuan Wang, Pan Ran, Luhan Dai, Yang Lv, Yuxia Sun, Zhangyan Mu, Yamei Sun, Lingyu Tang, William A. Goddard, Mengning Ding","doi":"10.1038/s41467-024-54318-7","DOIUrl":null,"url":null,"abstract":"<p>Electro-selective-oxidation using water as a green oxygen source demonstrates promising potential towards efficient and sustainable chemical upgrading. However, surface micro-kinetics regarding co-adsorption and reaction between organic and oxygen intermediates remain unclear. Here we systematically study the electro-oxidation of aldehydes, alcohols, and amines on Co/Ni-oxyhydroxides with multiple characterizations. Utilizing Fourier transformed alternating current voltammetry (FTacV) measurements, we show the identification and quantification of two key <i>operando</i> parameters (Δ<i>I</i><sub>harmonics</sub>/<i>I</i><sub>OER</sub> and Δ<i>V</i><sub>harmonics</sub>) that can be fundamentally linked to the altered surface coverage (<span>\\(\\Delta {\\theta }_{{{{{\\rm{OH}}}}}^{*}}/{\\theta }_{{{{{\\rm{OH}}}}}^{*}}^{{{{\\rm{OER}}}}}\\)</span>) and the changes in adsorption energy of vital oxygenated intermediates (<span>\\({\\Delta G}_{{{{\\rm{OH}}}}*}^{{{{\\rm{EOOR}}}}}-{\\Delta G}_{{{{\\rm{OH}}}}*}^{{{{\\rm{OER}}}}}\\)</span>), under the influence of organic adsorption/oxidation. Mechanistic analysis based on these descriptors reveals distinct optimal oxyhydroxide surface states for each organics, and elucidates the critical catalyst design principles: balancing organic and M<sup>3+δ</sup>−OH* coverages and fine-tuning Δ<i>G</i> for key elementary steps, e.g., via precise modulation of chemical compositions, crystallinity, defects, electronic structures, and/or surface bimolecular interactions.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"76 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54318-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Electro-selective-oxidation using water as a green oxygen source demonstrates promising potential towards efficient and sustainable chemical upgrading. However, surface micro-kinetics regarding co-adsorption and reaction between organic and oxygen intermediates remain unclear. Here we systematically study the electro-oxidation of aldehydes, alcohols, and amines on Co/Ni-oxyhydroxides with multiple characterizations. Utilizing Fourier transformed alternating current voltammetry (FTacV) measurements, we show the identification and quantification of two key operando parameters (ΔIharmonics/IOER and ΔVharmonics) that can be fundamentally linked to the altered surface coverage (\(\Delta {\theta }_{{{{{\rm{OH}}}}}^{*}}/{\theta }_{{{{{\rm{OH}}}}}^{*}}^{{{{\rm{OER}}}}}\)) and the changes in adsorption energy of vital oxygenated intermediates (\({\Delta G}_{{{{\rm{OH}}}}*}^{{{{\rm{EOOR}}}}}-{\Delta G}_{{{{\rm{OH}}}}*}^{{{{\rm{OER}}}}}\)), under the influence of organic adsorption/oxidation. Mechanistic analysis based on these descriptors reveals distinct optimal oxyhydroxide surface states for each organics, and elucidates the critical catalyst design principles: balancing organic and M3+δ−OH* coverages and fine-tuning ΔG for key elementary steps, e.g., via precise modulation of chemical compositions, crystallinity, defects, electronic structures, and/or surface bimolecular interactions.

Abstract Image

水辅助电催化有机氧化两个关键操作过程物理化学描述符的参数化和量化
以水为绿色氧源的电选择氧化技术在实现高效和可持续的化学升级方面具有广阔的前景。然而,有机物和氧中间产物之间的共吸附和反应的表面微动力学仍不清楚。在此,我们系统地研究了醛类、醇类和胺类在 Co/Ni-oxyhydroxides 上的电氧化反应,并进行了多重表征。利用傅立叶变换交流伏安法(FTacV)测量、我们展示了两个关键操作参数(ΔIharmonics/IOER 和 ΔVharmonics)的识别和量化,这两个参数从根本上与改变的表面覆盖率(\(△ {\theta}_{{{{{\rm{OH}}}}}^{*}}/{\theta }_{{{{{\rm{OH}}}}}^{*}}^{{{{\rm{OER}}}}}\)) 和重要含氧中间产物吸附能的变化(({\Delta G}_{{{{\rm{OH}}}}*}^{{{{\rm{EOOR}}}}}-{\Delta G}_{{{{\rm{OH}}}}*}^{{{{\rm{OER}}}}}\)),有机吸附/氧化作用的影响。基于这些描述符的机理分析揭示了每种有机物截然不同的最佳氢氧化物表面状态,并阐明了催化剂设计的关键原则:平衡有机物和 M3+δ-OH* 的覆盖率,微调关键基本步骤的 ΔG,例如通过精确调节化学成分、结晶度、缺陷、电子结构和/或表面双分子相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信