Bailin Tian, Fangyuan Wang, Pan Ran, Luhan Dai, Yang Lv, Yuxia Sun, Zhangyan Mu, Yamei Sun, Lingyu Tang, William A. Goddard, Mengning Ding
{"title":"Parameterization and quantification of two key operando physio-chemical descriptors for water-assisted electro-catalytic organic oxidation","authors":"Bailin Tian, Fangyuan Wang, Pan Ran, Luhan Dai, Yang Lv, Yuxia Sun, Zhangyan Mu, Yamei Sun, Lingyu Tang, William A. Goddard, Mengning Ding","doi":"10.1038/s41467-024-54318-7","DOIUrl":null,"url":null,"abstract":"<p>Electro-selective-oxidation using water as a green oxygen source demonstrates promising potential towards efficient and sustainable chemical upgrading. However, surface micro-kinetics regarding co-adsorption and reaction between organic and oxygen intermediates remain unclear. Here we systematically study the electro-oxidation of aldehydes, alcohols, and amines on Co/Ni-oxyhydroxides with multiple characterizations. Utilizing Fourier transformed alternating current voltammetry (FTacV) measurements, we show the identification and quantification of two key <i>operando</i> parameters (Δ<i>I</i><sub>harmonics</sub>/<i>I</i><sub>OER</sub> and Δ<i>V</i><sub>harmonics</sub>) that can be fundamentally linked to the altered surface coverage (<span>\\(\\Delta {\\theta }_{{{{{\\rm{OH}}}}}^{*}}/{\\theta }_{{{{{\\rm{OH}}}}}^{*}}^{{{{\\rm{OER}}}}}\\)</span>) and the changes in adsorption energy of vital oxygenated intermediates (<span>\\({\\Delta G}_{{{{\\rm{OH}}}}*}^{{{{\\rm{EOOR}}}}}-{\\Delta G}_{{{{\\rm{OH}}}}*}^{{{{\\rm{OER}}}}}\\)</span>), under the influence of organic adsorption/oxidation. Mechanistic analysis based on these descriptors reveals distinct optimal oxyhydroxide surface states for each organics, and elucidates the critical catalyst design principles: balancing organic and M<sup>3+δ</sup>−OH* coverages and fine-tuning Δ<i>G</i> for key elementary steps, e.g., via precise modulation of chemical compositions, crystallinity, defects, electronic structures, and/or surface bimolecular interactions.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"76 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54318-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Electro-selective-oxidation using water as a green oxygen source demonstrates promising potential towards efficient and sustainable chemical upgrading. However, surface micro-kinetics regarding co-adsorption and reaction between organic and oxygen intermediates remain unclear. Here we systematically study the electro-oxidation of aldehydes, alcohols, and amines on Co/Ni-oxyhydroxides with multiple characterizations. Utilizing Fourier transformed alternating current voltammetry (FTacV) measurements, we show the identification and quantification of two key operando parameters (ΔIharmonics/IOER and ΔVharmonics) that can be fundamentally linked to the altered surface coverage (\(\Delta {\theta }_{{{{{\rm{OH}}}}}^{*}}/{\theta }_{{{{{\rm{OH}}}}}^{*}}^{{{{\rm{OER}}}}}\)) and the changes in adsorption energy of vital oxygenated intermediates (\({\Delta G}_{{{{\rm{OH}}}}*}^{{{{\rm{EOOR}}}}}-{\Delta G}_{{{{\rm{OH}}}}*}^{{{{\rm{OER}}}}}\)), under the influence of organic adsorption/oxidation. Mechanistic analysis based on these descriptors reveals distinct optimal oxyhydroxide surface states for each organics, and elucidates the critical catalyst design principles: balancing organic and M3+δ−OH* coverages and fine-tuning ΔG for key elementary steps, e.g., via precise modulation of chemical compositions, crystallinity, defects, electronic structures, and/or surface bimolecular interactions.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.