Quinolone-mediated metabolic cross-feeding develops aluminium tolerance in soil microbial consortia

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zhiyuan Ma, Meitong Jiang, Chaoyang Liu, Ertao Wang, Yang Bai, Mengting Maggie Yuan, Shengjing Shi, Jizhong Zhou, Jixian Ding, Yimei Xie, Hui Zhang, Yan Yang, Renfang Shen, Thomas W. Crowther, Jiabao Zhang, Yuting Liang
{"title":"Quinolone-mediated metabolic cross-feeding develops aluminium tolerance in soil microbial consortia","authors":"Zhiyuan Ma, Meitong Jiang, Chaoyang Liu, Ertao Wang, Yang Bai, Mengting Maggie Yuan, Shengjing Shi, Jizhong Zhou, Jixian Ding, Yimei Xie, Hui Zhang, Yan Yang, Renfang Shen, Thomas W. Crowther, Jiabao Zhang, Yuting Liang","doi":"10.1038/s41467-024-54616-0","DOIUrl":null,"url":null,"abstract":"<p>Aluminium (Al)-tolerant beneficial bacteria confer resistance to Al toxicity to crops in widely distributed acidic soils. However, the mechanism by which microbial consortia maintain Al tolerance under acid and Al toxicity stress remains unknown. Here, we demonstrate that a soil bacterial consortium composed of <i>Rhodococcus erythropolis</i> and <i>Pseudomonas aeruginosa</i> exhibit greater Al tolerance than either bacterium alone. <i>P. aeruginosa</i> releases the quorum sensing molecule 2-heptyl-1H-quinolin-4-one (HHQ), which is efficiently degraded by <i>R. erythropolis</i>. This degradation reduces population density limitations and further enhances the metabolic activity of <i>P. aeruginosa</i> under Al stress. Moreover, <i>R. erythropolis</i> converts HHQ into tryptophan, promoting the synthesis of peptidoglycan, a key component for cell wall stability, thereby improving the Al tolerance of <i>R. erythropolis</i>. This study reveals a metabolic cross-feeding mechanism that maintains microbial Al tolerance, offering insights for designing synthetic microbial consortia to sustain food security and sustainable agriculture in acidic soil regions.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"24 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54616-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Aluminium (Al)-tolerant beneficial bacteria confer resistance to Al toxicity to crops in widely distributed acidic soils. However, the mechanism by which microbial consortia maintain Al tolerance under acid and Al toxicity stress remains unknown. Here, we demonstrate that a soil bacterial consortium composed of Rhodococcus erythropolis and Pseudomonas aeruginosa exhibit greater Al tolerance than either bacterium alone. P. aeruginosa releases the quorum sensing molecule 2-heptyl-1H-quinolin-4-one (HHQ), which is efficiently degraded by R. erythropolis. This degradation reduces population density limitations and further enhances the metabolic activity of P. aeruginosa under Al stress. Moreover, R. erythropolis converts HHQ into tryptophan, promoting the synthesis of peptidoglycan, a key component for cell wall stability, thereby improving the Al tolerance of R. erythropolis. This study reveals a metabolic cross-feeding mechanism that maintains microbial Al tolerance, offering insights for designing synthetic microbial consortia to sustain food security and sustainable agriculture in acidic soil regions.

Abstract Image

喹诺酮介导的新陈代谢交叉进食培养土壤微生物联合体的铝耐受性
在广泛分布的酸性土壤中,耐铝(Al)有益细菌可使作物对铝毒性产生抗性。然而,微生物联合体在酸和铝毒性胁迫下维持耐铝性的机制仍不清楚。在这里,我们证明了由红球菌和铜绿假单胞菌组成的土壤细菌联合体比其中任何一种细菌都具有更强的耐碱性。铜绿假单胞菌会释放出法定量传感分子 2-庚基-1H-喹啉-4-酮(HHQ),红球菌能有效地降解这种分子。这种降解降低了种群密度限制,并进一步提高了铜绿微囊藻在铝胁迫下的代谢活性。此外,红球菌还能将 HHQ 转化为色氨酸,促进细胞壁稳定性的关键成分肽聚糖的合成,从而提高红球菌对铝的耐受性。这项研究揭示了维持微生物耐碱性的代谢交叉进食机制,为设计合成微生物联合体以维持酸性土壤地区的粮食安全和可持续农业提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信