Samar Elorbany, Chiara Berlato, Larissa S. Carnevalli, Eleni Maniati, Simon T. Barry, Jun Wang, Ranjit Manchanda, Julia Kzhyshkowska, Frances Balkwill
{"title":"Immunotherapy that improves response to chemotherapy in high-grade serous ovarian cancer","authors":"Samar Elorbany, Chiara Berlato, Larissa S. Carnevalli, Eleni Maniati, Simon T. Barry, Jun Wang, Ranjit Manchanda, Julia Kzhyshkowska, Frances Balkwill","doi":"10.1038/s41467-024-54295-x","DOIUrl":null,"url":null,"abstract":"<p>Single-cell RNA sequencing (scRNAseq) of tumour-infiltrating immune cells in high-grade serous ovarian cancer (HGSOC) omental biopsies reveals potential targets that could enhance response to neo-adjuvant chemotherapy (NACT). Analysis of 64,097 cells identifies NACT-induced overexpression of stabilin-1 (clever-1) on macrophages and FOXP3 in Tregs that is confirmed at the protein level. STAB1 inhibition in vitro induces anti-tumour macrophages. FOXP3 anti-sense oligonucleotide (FOXP3-ASO), repolarises Tregs to an effector T cell phenotype. ScRNAseq on 69,781 cells from an HGSOC syngeneic mouse model recapitulates the patients’ data. Combining chemotherapy with anti-stabilin1 antibody and/or Foxp3-ASO significantly increases survival of mice with established peritoneal disease in two HGSOC syngeneic models and progression-free survival in a third model. Long-term survivors (300 days + ) are resistant to tumour rechallenge. Anti-stabilin1 antibody enriches the tumours with CXCL9+ macrophages and Foxp3-ASO increases TBET cell infiltration. Our results suggest that targeting these molecules in immune cells may improve chemotherapy response in patients.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"13 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54295-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Single-cell RNA sequencing (scRNAseq) of tumour-infiltrating immune cells in high-grade serous ovarian cancer (HGSOC) omental biopsies reveals potential targets that could enhance response to neo-adjuvant chemotherapy (NACT). Analysis of 64,097 cells identifies NACT-induced overexpression of stabilin-1 (clever-1) on macrophages and FOXP3 in Tregs that is confirmed at the protein level. STAB1 inhibition in vitro induces anti-tumour macrophages. FOXP3 anti-sense oligonucleotide (FOXP3-ASO), repolarises Tregs to an effector T cell phenotype. ScRNAseq on 69,781 cells from an HGSOC syngeneic mouse model recapitulates the patients’ data. Combining chemotherapy with anti-stabilin1 antibody and/or Foxp3-ASO significantly increases survival of mice with established peritoneal disease in two HGSOC syngeneic models and progression-free survival in a third model. Long-term survivors (300 days + ) are resistant to tumour rechallenge. Anti-stabilin1 antibody enriches the tumours with CXCL9+ macrophages and Foxp3-ASO increases TBET cell infiltration. Our results suggest that targeting these molecules in immune cells may improve chemotherapy response in patients.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.