Liya Liu, Binbin Hu, Siying Guo, Zhihui Xue, Tao Wang, Cui Zhang
{"title":"miR394 and LCR cooperate with TPL to regulate AM initiation","authors":"Liya Liu, Binbin Hu, Siying Guo, Zhihui Xue, Tao Wang, Cui Zhang","doi":"10.1038/s41467-024-54494-6","DOIUrl":null,"url":null,"abstract":"<p>Plant architecture is a main determinate of crop yield, and lateral branching significantly influences the number of inflorescences and seeds. The mechanism of axillary bud initiation remains unclear. This work aimed to examine how miRNAs regulate axillary bud initiation. By constructing a small RNA library and screening a mutant population, we revealed the initiation of axillary buds is specifically induced by miR394 and repressed by its target, <i>LEAF CURLING RESPONSIVENESS</i> (<i>LCR</i>). Using promoter-driven fluorescent tags and in situ hybridization, we showed that miR394 is localized in the center of the leaf axil where AMs are initiated. Through molecular and genetic research, we revealed that miR394/<i>LCR</i> may regulate <i>REVOLUTA</i> (<i>REV</i>) and <i>SHOOT MERISTEMLESS</i> (<i>STM</i>) to establish the axillary meristem. Immunoprecipitation-mass spectrometry studies revealed that LCR, as an F-box protein, may interact with TOPLESS (TPL) proteins and participate in ubiquitinated protein degradation. Our results reveal an important mechanism by which the miR394-regulated LCR accelerates the degradation of TPL to precisely modulate axillary bud initiation.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"19 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54494-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Plant architecture is a main determinate of crop yield, and lateral branching significantly influences the number of inflorescences and seeds. The mechanism of axillary bud initiation remains unclear. This work aimed to examine how miRNAs regulate axillary bud initiation. By constructing a small RNA library and screening a mutant population, we revealed the initiation of axillary buds is specifically induced by miR394 and repressed by its target, LEAF CURLING RESPONSIVENESS (LCR). Using promoter-driven fluorescent tags and in situ hybridization, we showed that miR394 is localized in the center of the leaf axil where AMs are initiated. Through molecular and genetic research, we revealed that miR394/LCR may regulate REVOLUTA (REV) and SHOOT MERISTEMLESS (STM) to establish the axillary meristem. Immunoprecipitation-mass spectrometry studies revealed that LCR, as an F-box protein, may interact with TOPLESS (TPL) proteins and participate in ubiquitinated protein degradation. Our results reveal an important mechanism by which the miR394-regulated LCR accelerates the degradation of TPL to precisely modulate axillary bud initiation.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.