{"title":"Eco-friendly self-cleaning coatings: fundamentals, fabrication, applications, and sustainability†","authors":"Tanaji K. Chavan and Sushanta K. Sethi","doi":"10.1039/D4TB01392A","DOIUrl":null,"url":null,"abstract":"<p >Eco-friendly self-cleaning coatings have garnered significant attention due to their potential to address environmental concerns while offering remarkable properties. This review explores the dynamic field of such coatings, focusing on their fundamental principles, fabrication techniques, applications, and sustainability. The main findings of this review shed light on the fundamentals of a wetting phenomenon that underpins superhydrophobicity and self-cleaning, revealing how bio-inspired approaches and sustainable materials have enabled the development of sustainable coatings. This review is structured around the fundamental principles of superhydrophobicity, discussing the basic mechanisms and following different approaches to eco-friendly coatings, focusing on bio-inspired methods and sustainable materials. Next, detailed fabrication techniques are discussed to create such coatings followed by various applications across industries, emphasizing the real-world impact of eco-friendly coatings. The next section discusses the various advantages followed by investigating the environmental implications and discussing how these coatings contribute to sustainability. The review concludes with commercial superhydrophobic self-cleaning products, which reflect the current state of research, outlining the challenges, and providing insights into future directions and innovations in this field. By providing an in-depth analysis of their fabrication techniques, applications, and potential future directions, it serves as a valuable resource for researchers and engineers seeking to design eco-friendly superhydrophobic coatings.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 2","pages":" 429-453"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb01392a","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Eco-friendly self-cleaning coatings have garnered significant attention due to their potential to address environmental concerns while offering remarkable properties. This review explores the dynamic field of such coatings, focusing on their fundamental principles, fabrication techniques, applications, and sustainability. The main findings of this review shed light on the fundamentals of a wetting phenomenon that underpins superhydrophobicity and self-cleaning, revealing how bio-inspired approaches and sustainable materials have enabled the development of sustainable coatings. This review is structured around the fundamental principles of superhydrophobicity, discussing the basic mechanisms and following different approaches to eco-friendly coatings, focusing on bio-inspired methods and sustainable materials. Next, detailed fabrication techniques are discussed to create such coatings followed by various applications across industries, emphasizing the real-world impact of eco-friendly coatings. The next section discusses the various advantages followed by investigating the environmental implications and discussing how these coatings contribute to sustainability. The review concludes with commercial superhydrophobic self-cleaning products, which reflect the current state of research, outlining the challenges, and providing insights into future directions and innovations in this field. By providing an in-depth analysis of their fabrication techniques, applications, and potential future directions, it serves as a valuable resource for researchers and engineers seeking to design eco-friendly superhydrophobic coatings.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices