Yandong Huang, Lanting Jia, Shiqi Zhang, Lang Yan, Lei Li
{"title":"Bimetallic doped carbon dot nanozymes for enhanced sonodynamic and nanocatalytic therapy.","authors":"Yandong Huang, Lanting Jia, Shiqi Zhang, Lang Yan, Lei Li","doi":"10.1039/d4tb01916d","DOIUrl":null,"url":null,"abstract":"<p><p>Conventional inorganic semiconductors are not suitable for acting as nanozymes or sonosensitizers for <i>in vivo</i> therapeutic nanomedicine owing to the lack of excellent biocompatibility. Biocompatible carbon dots (CDs) exhibit a variety of biological activities due to their adjustable size and surface chemical modification; however, the simultaneous sonodynamic activity and multiple enzyme-mimicking catalytic activity of a single CD have not been reported. Herein, we report the development of bimetallic doped CDs as a high-efficiency nanozyme and sonosensitizer for enhanced sonodynamic therapy (SDT) and nanocatalytic therapy (NCT). By selecting metal-organic complexes like EDTA-FeNa as the carbon source, we ensure that the coordination environments of metal atoms are preserved throughout the low-temperature calcination process. Compared with the single metal doped CDs including Fe-CDs or Ni-CDs, the obtained Fe and Ni co-doped CDs (Fe-Ni-CDs) not only exhibit enhanced sonodynamic activity owing to the decreased bandgap, but also possess augmented dual enzyme-mimicking catalytic activities due to the synergistic effect of bimetallic ions. The Fe-Ni-CD-mediated cascade amplification of ROS generation could lead to the production of <sup>1</sup>O<sub>2</sub> and O<sub>2</sub>˙<sup>-</sup> through SDT, the generation of ˙OH through POD-mimicking catalytic activity, and the provision of more O<sub>2</sub> for SDT through CAT-mimicking catalytic activity. Through the integrated multifunctionality of Fe-Ni-CDs, we successfully enhanced the effectiveness of antitumor treatment with a single drug injection and a single US irradiation for enhanced SDT and NCT. This work provides a distinct paradigm of endowing CDs with sonodynamic and multiple enzyme-mimicking catalytic activities for enhanced SDT and NCT through bimetallic ion doping.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4tb01916d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional inorganic semiconductors are not suitable for acting as nanozymes or sonosensitizers for in vivo therapeutic nanomedicine owing to the lack of excellent biocompatibility. Biocompatible carbon dots (CDs) exhibit a variety of biological activities due to their adjustable size and surface chemical modification; however, the simultaneous sonodynamic activity and multiple enzyme-mimicking catalytic activity of a single CD have not been reported. Herein, we report the development of bimetallic doped CDs as a high-efficiency nanozyme and sonosensitizer for enhanced sonodynamic therapy (SDT) and nanocatalytic therapy (NCT). By selecting metal-organic complexes like EDTA-FeNa as the carbon source, we ensure that the coordination environments of metal atoms are preserved throughout the low-temperature calcination process. Compared with the single metal doped CDs including Fe-CDs or Ni-CDs, the obtained Fe and Ni co-doped CDs (Fe-Ni-CDs) not only exhibit enhanced sonodynamic activity owing to the decreased bandgap, but also possess augmented dual enzyme-mimicking catalytic activities due to the synergistic effect of bimetallic ions. The Fe-Ni-CD-mediated cascade amplification of ROS generation could lead to the production of 1O2 and O2˙- through SDT, the generation of ˙OH through POD-mimicking catalytic activity, and the provision of more O2 for SDT through CAT-mimicking catalytic activity. Through the integrated multifunctionality of Fe-Ni-CDs, we successfully enhanced the effectiveness of antitumor treatment with a single drug injection and a single US irradiation for enhanced SDT and NCT. This work provides a distinct paradigm of endowing CDs with sonodynamic and multiple enzyme-mimicking catalytic activities for enhanced SDT and NCT through bimetallic ion doping.