Deep medullary veins integrity and relationships with small vessel disease and interstitial diffusivity measures in patients with a recent small subcortical infarct.

Carla Brenlla, Caterina Sozzi, Andrés Girona, Emma Muñoz-Moreno, Carlos Laredo, Alejandro Rodríguez-Vázquez, Sergio Amaro, Arturo Renú, Antonio Doncel-Moriano, Laura Llull, Xabier Urra, Salvatore Rudilosso, Ángel Chamorro
{"title":"Deep medullary veins integrity and relationships with small vessel disease and interstitial diffusivity measures in patients with a recent small subcortical infarct.","authors":"Carla Brenlla, Caterina Sozzi, Andrés Girona, Emma Muñoz-Moreno, Carlos Laredo, Alejandro Rodríguez-Vázquez, Sergio Amaro, Arturo Renú, Antonio Doncel-Moriano, Laura Llull, Xabier Urra, Salvatore Rudilosso, Ángel Chamorro","doi":"10.3174/ajnr.A8591","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>The role of the venous compartment in cerebral small vessel disease has yet to be fully understood. As such, we evaluated how deep medullary veins integrity relates to MRI-based small vessel disease severity markers and glymphatic function assessed by DTI measures in patients with a recent small subcortical infarct.</p><p><strong>Materials and methods: </strong>We gathered demographic, clinical, and 3 Tesla-MRI imaging data from 50 patients with a recent small subcortical infarct. We evaluate the venular integrity using two visual scales based on their appearance on SWI. We assessed the number of lacunes and microbleeds, white matter hyperintensities volume, perivascular spaces volume in basal ganglia and white matter, summary-small vessel disease score, and brain volume. Diffusivity measures in normal-appearing white matter included free water fraction, mean diffusivity and fractional anisotropy with and without free water correction, and DTI along the perivascular spaces. After categorizing the cohort in quartiles according to both venular scores, we assessed their correlations with small vessel disease markers and diffusivity measures using multivariable ordinal regression analyses adjusting for age, sex, smoking, and summary small vessel disease score.</p><p><strong>Results: </strong>In univariate analysis most of the imaging variables, except for microbleeds, perivascular spaces in white matter and DTI-along the perivascular spaces, were associated with one or both venular scores. In multivariate analysis (OR, 95% CI), free water (1.33, 1.03-1.73), mean diffusivity (4.56, 1.32-15.81), fractional anisotropy (0.77, 0.63-0.93), free water-corrected mean diffusivity and fractional anisotropy (2.39, 1.06-5.39;0.78, 0.65-0.94, respectively), associated with vein appearance, while only brain volume (0.48, 0.25-0.94), fractional anisotropy with and without free water correction (0.82,0.86-0.99; 0.83, 0.7-0.99, respectively) remained significant for vein count.</p><p><strong>Conclusions: </strong>In patients with a recent small subcortical infarct, disruption of the deep medullary veins, increased extracellular water, and white matter injury appear to be associated.</p><p><strong>Abbreviations: </strong>SVD=small vessel disease; DMV=deep medullary veins; WMH=white matter hyperintensities; PVS=perivascular spaces; DTI-ALPS=diffusion tensor image analysis along the perivascular spaces; FW=free water; MD=mean diffusivity; FA= fractional anisotropy; BG=basal ganglia.</p>","PeriodicalId":93863,"journal":{"name":"AJNR. American journal of neuroradiology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AJNR. American journal of neuroradiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3174/ajnr.A8591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background and purpose: The role of the venous compartment in cerebral small vessel disease has yet to be fully understood. As such, we evaluated how deep medullary veins integrity relates to MRI-based small vessel disease severity markers and glymphatic function assessed by DTI measures in patients with a recent small subcortical infarct.

Materials and methods: We gathered demographic, clinical, and 3 Tesla-MRI imaging data from 50 patients with a recent small subcortical infarct. We evaluate the venular integrity using two visual scales based on their appearance on SWI. We assessed the number of lacunes and microbleeds, white matter hyperintensities volume, perivascular spaces volume in basal ganglia and white matter, summary-small vessel disease score, and brain volume. Diffusivity measures in normal-appearing white matter included free water fraction, mean diffusivity and fractional anisotropy with and without free water correction, and DTI along the perivascular spaces. After categorizing the cohort in quartiles according to both venular scores, we assessed their correlations with small vessel disease markers and diffusivity measures using multivariable ordinal regression analyses adjusting for age, sex, smoking, and summary small vessel disease score.

Results: In univariate analysis most of the imaging variables, except for microbleeds, perivascular spaces in white matter and DTI-along the perivascular spaces, were associated with one or both venular scores. In multivariate analysis (OR, 95% CI), free water (1.33, 1.03-1.73), mean diffusivity (4.56, 1.32-15.81), fractional anisotropy (0.77, 0.63-0.93), free water-corrected mean diffusivity and fractional anisotropy (2.39, 1.06-5.39;0.78, 0.65-0.94, respectively), associated with vein appearance, while only brain volume (0.48, 0.25-0.94), fractional anisotropy with and without free water correction (0.82,0.86-0.99; 0.83, 0.7-0.99, respectively) remained significant for vein count.

Conclusions: In patients with a recent small subcortical infarct, disruption of the deep medullary veins, increased extracellular water, and white matter injury appear to be associated.

Abbreviations: SVD=small vessel disease; DMV=deep medullary veins; WMH=white matter hyperintensities; PVS=perivascular spaces; DTI-ALPS=diffusion tensor image analysis along the perivascular spaces; FW=free water; MD=mean diffusivity; FA= fractional anisotropy; BG=basal ganglia.

近期皮层下小梗死患者髓深静脉的完整性及其与小血管疾病和间质弥散度测量的关系。
背景和目的:静脉区在脑小血管疾病中的作用尚未完全明了。因此,我们评估了髓深静脉完整性与基于 MRI 的小血管疾病严重性指标以及通过 DTI 测量评估的近期皮层下小梗死患者的脑功能之间的关系:我们收集了50名近期皮层下小梗塞患者的人口统计学、临床和3特斯拉-MRI成像数据。我们根据静脉在 SWI 上的表现,使用两个视觉量表评估静脉的完整性。我们评估了裂隙和微出血的数量、白质高密度体积、基底节和白质的血管周围间隙体积、小血管疾病评分摘要和脑体积。正常外观白质的扩散性测量包括游离水分数、平均扩散性和分数各向异性(含或不含游离水校正)以及沿血管周围间隙的 DTI。根据这两项静脉评分将队列分为四等分后,我们使用多变量序数回归分析评估了它们与小血管疾病标志物和弥散度测量的相关性,并对年龄、性别、吸烟和小血管疾病总评分进行了调整:在单变量分析中,除微小出血、白质血管周围间隙和沿血管周围间隙的 DTI 外,大多数成像变量都与一个或两个静脉评分相关。在多变量分析中(OR,95% CI),游离水(1.33,1.03-1.73)、平均弥散度(4.56,1.32-15.81)、分数各向异性(0.77,0.63-0.93)、游离水校正平均弥散度和分数各向异性(分别为 2.39,1.06-5.39;0.78,0.65-0.94)与静脉评分相关。而只有脑容量(0.48,0.25-0.94)、有自由水校正和无自由水校正的分数各向异性(分别为0.82,0.86-0.99;0.83,0.7-0.99)对静脉数量仍有显著影响:结论:在近期发生皮层下小梗死的患者中,髓深静脉的破坏、细胞外水分的增加和白质损伤似乎是相关的:缩写:SVD=小血管疾病;DMV=延髓深静脉;WMH=白质高密度;PVS=血管周围间隙;DTI-ALPS=沿血管周围间隙的扩散张量图像分析;FW=自由水;MD=平均扩散率;FA=分数各向异性;BG=基底节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信