{"title":"Neutrophils in toxicology: a forgotten field.","authors":"Pablo Scharf, Michael Aschner, Sandra Farsky","doi":"10.1080/10937404.2024.2431692","DOIUrl":null,"url":null,"abstract":"<p><p>Neutrophils are the most abundant leukocytes in humans and essential for innate immune responses despite a short lifespan in the bloodstream. A complex and tightly regulated production of neutrophils is required to maintain host defense. This process involves intricate signaling between the bone marrow, blood, and tissue clearance. Deficiency or excessive neutrophil infiltration impairs host defenses. Historically, neutrophils were viewed as initial effectors in innate immune responses. Recent discoveries have expanded our understanding of neutrophil biology, identifying multiple activation states and subsets. These subsets may switch phenotypes based on the composition of the microenvironment and might exhibit reverse migratory behavior, moving from inflamed tissues back into the bloodstream. This versatility poses neutrophils as key players in (1) signaling for host defenses, (2) trained immunity, (3) tissue repair, and (4) cancer biology. Disturbances in neutrophil production, responsiveness, apoptosis, and cell removal significantly affect inflammatory diseases and cancer progression. Environmental factors may directly affect the immune system and trigger the onset of many diseases; however, the precise mechanisms underlying the impact of xenobiotics on neutrophil production and functions remain unclear. This review aimed to summarize the current knowledge on neutrophil ontogeny, plasticity, and roles in inflammation, tissue repair, and cancer, emphasizing their susceptibility to different sources of xenobiotic exposures.</p>","PeriodicalId":49971,"journal":{"name":"Journal of Toxicology and Environmental Health-Part B-Critical Reviews","volume":" ","pages":"1-32"},"PeriodicalIF":6.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicology and Environmental Health-Part B-Critical Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10937404.2024.2431692","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Neutrophils are the most abundant leukocytes in humans and essential for innate immune responses despite a short lifespan in the bloodstream. A complex and tightly regulated production of neutrophils is required to maintain host defense. This process involves intricate signaling between the bone marrow, blood, and tissue clearance. Deficiency or excessive neutrophil infiltration impairs host defenses. Historically, neutrophils were viewed as initial effectors in innate immune responses. Recent discoveries have expanded our understanding of neutrophil biology, identifying multiple activation states and subsets. These subsets may switch phenotypes based on the composition of the microenvironment and might exhibit reverse migratory behavior, moving from inflamed tissues back into the bloodstream. This versatility poses neutrophils as key players in (1) signaling for host defenses, (2) trained immunity, (3) tissue repair, and (4) cancer biology. Disturbances in neutrophil production, responsiveness, apoptosis, and cell removal significantly affect inflammatory diseases and cancer progression. Environmental factors may directly affect the immune system and trigger the onset of many diseases; however, the precise mechanisms underlying the impact of xenobiotics on neutrophil production and functions remain unclear. This review aimed to summarize the current knowledge on neutrophil ontogeny, plasticity, and roles in inflammation, tissue repair, and cancer, emphasizing their susceptibility to different sources of xenobiotic exposures.
期刊介绍:
"Journal of Toxicology and Environmental Health: Part B - Critical Reviews" is an academic journal published by Taylor & Francis, focusing on the critical examination of research in the areas of environmental exposure and population health. With an ISSN identifier of 1093-7404, this journal has established itself as a significant source of scholarly content in the field of toxicology and environmental health.
Since its inception, the journal has published over 424 articles that have garnered 35,097 citations, reflecting its impact and relevance in the scientific community. Known for its comprehensive reviews, the journal also goes by the names "Critical Reviews" and "Journal of Toxicology & Environmental Health, Part B, Critical Reviews."
The journal's mission is to provide a platform for in-depth analysis and critical discussion of the latest findings in toxicology, environmental health, and related disciplines. By doing so, it contributes to the advancement of knowledge and understanding of the complex interactions between environmental factors and human health, aiding in the development of strategies to protect and improve public health.