Karin Larsson, Dennis Hein, Ruihan Huang, Daniel Collin, Andrea Scotti, Erik Fredenberg, Jonas Andersson, Mats Persson
{"title":"Deep learning estimation of proton stopping power with photon-counting computed tomography: a virtual study.","authors":"Karin Larsson, Dennis Hein, Ruihan Huang, Daniel Collin, Andrea Scotti, Erik Fredenberg, Jonas Andersson, Mats Persson","doi":"10.1117/1.JMI.11.S1.S12809","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Proton radiation therapy may achieve precise dose delivery to the tumor while sparing non-cancerous surrounding tissue, owing to the distinct Bragg peaks of protons. Aligning the high-dose region with the tumor requires accurate estimates of the proton stopping power ratio (SPR) of patient tissues, commonly derived from computed tomography (CT) image data. Photon-counting detectors for CT have demonstrated advantages over their energy-integrating counterparts, such as improved quantitative imaging, higher spatial resolution, and filtering of electronic noise. We assessed the potential of photon-counting computed tomography (PCCT) for improving SPR estimation by training a deep neural network on a domain transform from PCCT images to SPR maps.</p><p><strong>Approach: </strong>The XCAT phantom was used to simulate PCCT images of the head with CatSim, as well as to compute corresponding ground truth SPR maps. The tube current was set to 260 mA, tube voltage to 120 kV, and number of view angles to 4000. The CT images and SPR maps were used as input and labels for training a U-Net.</p><p><strong>Results: </strong>Prediction of SPR with the network yielded average root mean square errors (RMSE) of 0.26% to 0.41%, which was an improvement on the RMSE for methods based on physical modeling developed for single-energy CT at 0.40% to 1.30% and dual-energy CT at 0.41% to 3.00%, performed on the simulated PCCT data.</p><p><strong>Conclusions: </strong>These early results show promise for using a combination of PCCT and deep learning for estimating SPR, which in extension demonstrates potential for reducing the beam range uncertainty in proton therapy.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 Suppl 1","pages":"S12809"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576576/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.11.S1.S12809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Proton radiation therapy may achieve precise dose delivery to the tumor while sparing non-cancerous surrounding tissue, owing to the distinct Bragg peaks of protons. Aligning the high-dose region with the tumor requires accurate estimates of the proton stopping power ratio (SPR) of patient tissues, commonly derived from computed tomography (CT) image data. Photon-counting detectors for CT have demonstrated advantages over their energy-integrating counterparts, such as improved quantitative imaging, higher spatial resolution, and filtering of electronic noise. We assessed the potential of photon-counting computed tomography (PCCT) for improving SPR estimation by training a deep neural network on a domain transform from PCCT images to SPR maps.
Approach: The XCAT phantom was used to simulate PCCT images of the head with CatSim, as well as to compute corresponding ground truth SPR maps. The tube current was set to 260 mA, tube voltage to 120 kV, and number of view angles to 4000. The CT images and SPR maps were used as input and labels for training a U-Net.
Results: Prediction of SPR with the network yielded average root mean square errors (RMSE) of 0.26% to 0.41%, which was an improvement on the RMSE for methods based on physical modeling developed for single-energy CT at 0.40% to 1.30% and dual-energy CT at 0.41% to 3.00%, performed on the simulated PCCT data.
Conclusions: These early results show promise for using a combination of PCCT and deep learning for estimating SPR, which in extension demonstrates potential for reducing the beam range uncertainty in proton therapy.
期刊介绍:
JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.