{"title":"Cortical bone fracture analysis including the combined influence of osteon orientations, applied load and crack lengths: A numerical investigation.","authors":"Ajay Kumar, Himanshu Pathak, Rajesh Ghosh","doi":"10.1177/09544119241299081","DOIUrl":null,"url":null,"abstract":"<p><p>Similar to how fiber orientation affects composite materials, osteon orientation affects the elasticity and fracture behavior of cortical bone. The objective of this work is to predict the combined effect of orientations of the osteon, applied load, and various crack lengths on the fracture characteristics of cortical bone. Orthotropic modeling and analyses of cortical bone were carried out using the linear-elastic fracture mechanics (LEFM) based extended finite element method (XFEM). Five values of applied mode-I and mode-II load, five distinct crack lengths, and seven angular osteon orientations were taken into consideration to predict the change in SIF. In this work, the 2-D plane stress assumption with a straight-edge crack was taken into consideration. It was found that the values of SIF significantly increased when the load (15-35 MPa) and fracture length (1.8-2.2 mm) increased. SIF (<i>K</i><sub>I</sub>) values under mode-I loading were discovered to be substantially lower than SIF (<i>K</i><sub>I</sub> and <i>K</i><sub>II</sub>) values under mode-II loading. Results of this study showed that osteon orientations with different crack lengths and applied loads had a significant impact on cortical bone fracture characteristics. Only the crack's opening was discovered to be caused by mode-I loading; however, both the opening and shearing of the crack were found to be caused by mode-II loading. Despite differences in applied loads, crack lengths, and osteon orientations, the values of the SIF predicted in this work (under mode-I loading) using LEFM-based XFEM exhibited good agreement with the prior published experimental and numerical data.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"9544119241299081"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544119241299081","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Similar to how fiber orientation affects composite materials, osteon orientation affects the elasticity and fracture behavior of cortical bone. The objective of this work is to predict the combined effect of orientations of the osteon, applied load, and various crack lengths on the fracture characteristics of cortical bone. Orthotropic modeling and analyses of cortical bone were carried out using the linear-elastic fracture mechanics (LEFM) based extended finite element method (XFEM). Five values of applied mode-I and mode-II load, five distinct crack lengths, and seven angular osteon orientations were taken into consideration to predict the change in SIF. In this work, the 2-D plane stress assumption with a straight-edge crack was taken into consideration. It was found that the values of SIF significantly increased when the load (15-35 MPa) and fracture length (1.8-2.2 mm) increased. SIF (KI) values under mode-I loading were discovered to be substantially lower than SIF (KI and KII) values under mode-II loading. Results of this study showed that osteon orientations with different crack lengths and applied loads had a significant impact on cortical bone fracture characteristics. Only the crack's opening was discovered to be caused by mode-I loading; however, both the opening and shearing of the crack were found to be caused by mode-II loading. Despite differences in applied loads, crack lengths, and osteon orientations, the values of the SIF predicted in this work (under mode-I loading) using LEFM-based XFEM exhibited good agreement with the prior published experimental and numerical data.
与纤维取向对复合材料的影响类似,骨架取向也会影响皮质骨的弹性和断裂行为。这项工作的目的是预测骨质的取向、外加载荷和各种裂缝长度对皮质骨断裂特性的综合影响。使用基于线性弹性断裂力学(LEFM)的扩展有限元法(XFEM)对皮质骨进行了各向同性建模和分析。在预测 SIF 变化时,考虑了五种应用模式 I 和模式 II 载荷值、五种不同的裂缝长度和七种角度骨质取向。在这项工作中,考虑了直边裂缝的二维平面应力假设。结果发现,当载荷(15-35 兆帕)和断裂长度(1.8-2.2 毫米)增加时,SIF 值明显增加。发现模式 I 负载下的 SIF(KI)值大大低于模式 II 负载下的 SIF(KI 和 KII)值。研究结果表明,不同裂缝长度和加载荷载下的骨刺方向对皮质骨断裂特征有显著影响。研究发现,只有裂纹的张开是由模式 I 加载引起的,而裂纹的张开和剪切都是由模式 II 加载引起的。尽管外加载荷、裂缝长度和骨质取向存在差异,但本研究利用基于 LEFM 的 XFEM 预测的 SIF 值(在模式 I 加载下)与之前公布的实验和数值数据显示出良好的一致性。
期刊介绍:
The Journal of Engineering in Medicine is an interdisciplinary journal encompassing all aspects of engineering in medicine. The Journal is a vital tool for maintaining an understanding of the newest techniques and research in medical engineering.