Ingrid M Negrete-Hernandez, Ivonne B Lozano, Jesus Roman-Lopez, Jesus I Guzman-Castañeda
{"title":"Implementation of OSL nanoDot dosimetry in different treatment techniques for head and neck cancer.","authors":"Ingrid M Negrete-Hernandez, Ivonne B Lozano, Jesus Roman-Lopez, Jesus I Guzman-Castañeda","doi":"10.1093/rpd/ncae217","DOIUrl":null,"url":null,"abstract":"<p><p>In recent decades, technological advances have been made in the field of radiotherapy and with it the emergence of new dosimetric systems for their calibration and commissioning, among other uses. Such is the case of the measurement in the build-up region, where there is no charged-particle equilibrium, which is reflected in the increase in surface dose for patient treatments and potential skin toxicities as a secondary effect. This study utilizes optically stimulated dosemeters (nanoDot) and the radiochromic film (EBT3) to measure skin doses in patients with head and neck cancer who received radiotherapy. Accurately depicting 15 patients with different diagnoses from 3 linear accelerators using 3D, intensity modulated radiation therapy, or volumetric arc therapy/RapidArc technology, these results were compared with those calculated in the treatment planning system (TPS) and obtaining a percentage of variation for the EBT3 ranged from 0.30% to 6.15%, while that observed for the nanoDot was from 0.51% to 4.88%. This difference may be attributed to the reproducibility of placement in patients. Therefore, for clinical use, nanoDot dosemeters are a viable alternative for in vivo dosimetry where rapid validation of planning system results is required.</p>","PeriodicalId":20795,"journal":{"name":"Radiation protection dosimetry","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation protection dosimetry","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/rpd/ncae217","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In recent decades, technological advances have been made in the field of radiotherapy and with it the emergence of new dosimetric systems for their calibration and commissioning, among other uses. Such is the case of the measurement in the build-up region, where there is no charged-particle equilibrium, which is reflected in the increase in surface dose for patient treatments and potential skin toxicities as a secondary effect. This study utilizes optically stimulated dosemeters (nanoDot) and the radiochromic film (EBT3) to measure skin doses in patients with head and neck cancer who received radiotherapy. Accurately depicting 15 patients with different diagnoses from 3 linear accelerators using 3D, intensity modulated radiation therapy, or volumetric arc therapy/RapidArc technology, these results were compared with those calculated in the treatment planning system (TPS) and obtaining a percentage of variation for the EBT3 ranged from 0.30% to 6.15%, while that observed for the nanoDot was from 0.51% to 4.88%. This difference may be attributed to the reproducibility of placement in patients. Therefore, for clinical use, nanoDot dosemeters are a viable alternative for in vivo dosimetry where rapid validation of planning system results is required.
期刊介绍:
Radiation Protection Dosimetry covers all aspects of personal and environmental dosimetry and monitoring, for both ionising and non-ionising radiations. This includes biological aspects, physical concepts, biophysical dosimetry, external and internal personal dosimetry and monitoring, environmental and workplace monitoring, accident dosimetry, and dosimetry related to the protection of patients. Particular emphasis is placed on papers covering the fundamentals of dosimetry; units, radiation quantities and conversion factors. Papers covering archaeological dating are included only if the fundamental measurement method or technique, such as thermoluminescence, has direct application to personal dosimetry measurements. Papers covering the dosimetric aspects of radon or other naturally occurring radioactive materials and low level radiation are included. Animal experiments and ecological sample measurements are not included unless there is a significant relevant content reason.