Boosted Harris Hawks Shuffled Shepherd Optimization Augmented Deep Learning based motor imagery classification for brain computer interface.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2024-11-21 eCollection Date: 2024-01-01 DOI:10.1371/journal.pone.0313261
Fatmah Yousef Assiri, Mahmoud Ragab
{"title":"Boosted Harris Hawks Shuffled Shepherd Optimization Augmented Deep Learning based motor imagery classification for brain computer interface.","authors":"Fatmah Yousef Assiri, Mahmoud Ragab","doi":"10.1371/journal.pone.0313261","DOIUrl":null,"url":null,"abstract":"<p><p>Motor imagery (MI) classification has been commonly employed in making brain-computer interfaces (BCI) to manage the outside tools as a substitute neural muscular path. Effectual MI classification in BCI improves communication and mobility for people with a breakdown or motor damage, delivering a bridge between the brain's intentions and exterior actions. Employing electroencephalography (EEG) or aggressive neural recordings, machine learning (ML) methods are used to interpret patterns of brain action linked with motor image tasks. These models frequently depend upon models like support vector machine (SVM) or deep learning (DL) to distinguish among dissimilar MI classes, such as visualizing left or right limb actions. This procedure allows individuals, particularly those with motor disabilities, to utilize their opinions to command exterior devices like robotic limbs or computer borders. This article presents a Boosted Harris Hawks Shuffled Shepherd Optimization Augmented Deep Learning (BHHSHO-DL) technique based on Motor Imagery Classification for BCI. The BHHSHO-DL technique mainly exploits the hyperparameter-tuned DL approach for MI identification for BCI. Initially, the BHHSHO-DL technique performs data preprocessing utilizing the wavelet packet decomposition (WPD) model. Besides, the enhanced densely connected networks (DenseNet) model extracts the preprocessed data's complex and hierarchical feature patterns. Meanwhile, the BHHSHO technique-based hyperparameter tuning process is accomplished to elect optimal parameter values of the enhanced DenseNet model. Finally, the classification procedure is implemented by utilizing the convolutional autoencoder (CAE) model. The simulation value of the BHHSHO-DL methodology is performed on a benchmark dataset. The performance validation of the BHHSHO-DL methodology portrayed a superior accuracy value of 98.15% and 92.23% over other techniques under BCIC-III and BCIC-IV datasets.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"19 11","pages":"e0313261"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0313261","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Motor imagery (MI) classification has been commonly employed in making brain-computer interfaces (BCI) to manage the outside tools as a substitute neural muscular path. Effectual MI classification in BCI improves communication and mobility for people with a breakdown or motor damage, delivering a bridge between the brain's intentions and exterior actions. Employing electroencephalography (EEG) or aggressive neural recordings, machine learning (ML) methods are used to interpret patterns of brain action linked with motor image tasks. These models frequently depend upon models like support vector machine (SVM) or deep learning (DL) to distinguish among dissimilar MI classes, such as visualizing left or right limb actions. This procedure allows individuals, particularly those with motor disabilities, to utilize their opinions to command exterior devices like robotic limbs or computer borders. This article presents a Boosted Harris Hawks Shuffled Shepherd Optimization Augmented Deep Learning (BHHSHO-DL) technique based on Motor Imagery Classification for BCI. The BHHSHO-DL technique mainly exploits the hyperparameter-tuned DL approach for MI identification for BCI. Initially, the BHHSHO-DL technique performs data preprocessing utilizing the wavelet packet decomposition (WPD) model. Besides, the enhanced densely connected networks (DenseNet) model extracts the preprocessed data's complex and hierarchical feature patterns. Meanwhile, the BHHSHO technique-based hyperparameter tuning process is accomplished to elect optimal parameter values of the enhanced DenseNet model. Finally, the classification procedure is implemented by utilizing the convolutional autoencoder (CAE) model. The simulation value of the BHHSHO-DL methodology is performed on a benchmark dataset. The performance validation of the BHHSHO-DL methodology portrayed a superior accuracy value of 98.15% and 92.23% over other techniques under BCIC-III and BCIC-IV datasets.

基于增强深度学习的运动图像分类,用于脑计算机接口。
在制作脑机接口(BCI)时,通常采用运动图像(MI)分类来管理外部工具,以替代神经肌肉路径。BCI中有效的MI分类改善了脑损伤或运动损伤患者的交流和行动能力,在大脑意图和外部行动之间架起了一座桥梁。利用脑电图(EEG)或攻击性神经记录,机器学习(ML)方法被用来解释与运动图像任务相关的大脑动作模式。这些模型通常依赖于支持向量机(SVM)或深度学习(DL)等模型来区分不同的MI类别,例如可视化左肢或右肢动作。这种程序可以让个人,尤其是运动残疾人士,利用他们的意见来指挥外部设备,如机器人肢体或计算机边界。本文介绍了一种基于运动图像分类的增强深度学习(BHHSHO-DL)技术,用于BCI。BHHSHO-DL技术主要利用超参数调整的DL方法进行BCI的MI识别。首先,BHHSHO-DL 技术利用小波包分解(WPD)模型进行数据预处理。此外,增强型密集连接网络(DenseNet)模型可提取预处理数据的复杂和分层特征模式。同时,通过基于 BHHSHO 技术的超参数调整过程,选出增强型 DenseNet 模型的最佳参数值。最后,利用卷积自动编码器(CAE)模型实现分类过程。BHHSHO-DL 方法的模拟值是在基准数据集上进行的。BHHSHO-DL 方法的性能验证结果表明,在 BCIC-III 和 BCIC-IV 数据集下,BHHSHO-DL 方法的准确率分别为 98.15%和 92.23%,优于其他技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信