Single-photon 3D imaging of room-scale scenes through scattering media.

IF 3.2 2区 物理与天体物理 Q2 OPTICS
Optics express Pub Date : 2024-11-04 DOI:10.1364/OE.538003
Jianwei Zeng, Wei Li, Yijun Zhou, Feihu Xu
{"title":"Single-photon 3D imaging of room-scale scenes through scattering media.","authors":"Jianwei Zeng, Wei Li, Yijun Zhou, Feihu Xu","doi":"10.1364/OE.538003","DOIUrl":null,"url":null,"abstract":"<p><p>Light detection and ranging (LiDAR) utilizes eye-safe laser beams to perceive the world in three-dimensional (3D) detail, offering machines and computers with an accurate representation of their surroundings. This technology is widely employed in metrology, environmental monitoring, archaeology, and robotics. However, the presence of scattering media in the optical path, such as fog, dust, or translucent plates, will cause light scattering and occlude direct observation of the scene. To address scattering distortions, conventional methods require the prior knowledge of the scattering media or the target location, limiting their applicability outside the laboratory. Leveraging single-photon sensitivity and time-gated technology, single photon LiDAR emerges as a promising solution for active scattering imaging. In this study, we construct a single-photon LiDAR prototype and demonstrate its capability to perform 3D imaging of a room-scale (1.1 m × 1.1 m × 4 m) hidden scene behind a ground glass diffuser located approximately 50 meters away from the imaging system. Incorporating phase function to construct the forward model and considering the system-induced temporal broadening, our method is capable of producing reliable results behind various scattering layers. The results indicate potential applications such as remote non-invasive testing and detection in challenging scenarios.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"32 23","pages":"40706-40718"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.538003","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Light detection and ranging (LiDAR) utilizes eye-safe laser beams to perceive the world in three-dimensional (3D) detail, offering machines and computers with an accurate representation of their surroundings. This technology is widely employed in metrology, environmental monitoring, archaeology, and robotics. However, the presence of scattering media in the optical path, such as fog, dust, or translucent plates, will cause light scattering and occlude direct observation of the scene. To address scattering distortions, conventional methods require the prior knowledge of the scattering media or the target location, limiting their applicability outside the laboratory. Leveraging single-photon sensitivity and time-gated technology, single photon LiDAR emerges as a promising solution for active scattering imaging. In this study, we construct a single-photon LiDAR prototype and demonstrate its capability to perform 3D imaging of a room-scale (1.1 m × 1.1 m × 4 m) hidden scene behind a ground glass diffuser located approximately 50 meters away from the imaging system. Incorporating phase function to construct the forward model and considering the system-induced temporal broadening, our method is capable of producing reliable results behind various scattering layers. The results indicate potential applications such as remote non-invasive testing and detection in challenging scenarios.

通过散射介质对室内场景进行单光子三维成像。
光探测与测距(LiDAR)利用对眼睛无害的激光束来感知三维(3D)世界的细节,为机器和计算机提供周围环境的精确呈现。这项技术被广泛应用于计量、环境监测、考古和机器人技术领域。然而,光路中散射介质的存在,如雾、灰尘或半透明板,会导致光散射,遮挡对场景的直接观察。要解决散射失真问题,传统方法需要事先了解散射介质或目标位置,这就限制了其在实验室外的适用性。利用单光子灵敏度和时间门控技术,单光子激光雷达成为主动散射成像的一种有前途的解决方案。在本研究中,我们构建了一个单光子激光雷达原型,并演示了其对距离成像系统约 50 米远的地面玻璃扩散器后的房间规模(1.1 米 × 1.1 米 × 4 米)隐藏场景进行三维成像的能力。结合相位函数来构建前向模型,并考虑系统引起的时间展宽,我们的方法能够在各种散射层后产生可靠的结果。研究结果表明,这种方法具有潜在的应用价值,例如在具有挑战性的场景中进行远程非侵入式测试和检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics express
Optics express 物理-光学
CiteScore
6.60
自引率
15.80%
发文量
5182
审稿时长
2.1 months
期刊介绍: Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信