Real-time target recognition with all-optical neural networks for ghost imaging.

IF 3.2 2区 物理与天体物理 Q2 OPTICS
Optics express Pub Date : 2024-11-04 DOI:10.1364/OE.539339
Yuanyuan Xi, Yuchen He, Yadi Wang, Hui Chen, Huaibin Zheng, Jianbin Liu, Yu Zhou, Zhuo Xu
{"title":"Real-time target recognition with all-optical neural networks for ghost imaging.","authors":"Yuanyuan Xi, Yuchen He, Yadi Wang, Hui Chen, Huaibin Zheng, Jianbin Liu, Yu Zhou, Zhuo Xu","doi":"10.1364/OE.539339","DOIUrl":null,"url":null,"abstract":"<p><p>The generation and structural characteristics of random speckle patterns impact the implementation and imaging quality of computational ghost imaging. Their modulation is limited by traditional electronic hardware. We aim to address this limitation using the features of an all-optical neural network. This work proposes a real-time target recognition system based on an all-optical diffraction deep neural network for ghost imaging. We use a trained neural network to perform pure phase modulation on visible light, and directly complete the target recognition task by detecting the maximum value of light intensity signals at different positions. We optimized the system by simulating the effects of parameters, such as the number of layers of the network, photosensitive pixel, unit area etc., on the final recognition performance, and the accuracy of target recognition reached 91.73%. The trained neural network is materialised by 3D printing technology and experiments confirmed that the system successfully performs real-time target recognition at a low sampling rate of 1.25<i>%</i>. It also verified the feasibility and noise resistance of the system in practical application scenarios.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"32 23","pages":"40967-40978"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.539339","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The generation and structural characteristics of random speckle patterns impact the implementation and imaging quality of computational ghost imaging. Their modulation is limited by traditional electronic hardware. We aim to address this limitation using the features of an all-optical neural network. This work proposes a real-time target recognition system based on an all-optical diffraction deep neural network for ghost imaging. We use a trained neural network to perform pure phase modulation on visible light, and directly complete the target recognition task by detecting the maximum value of light intensity signals at different positions. We optimized the system by simulating the effects of parameters, such as the number of layers of the network, photosensitive pixel, unit area etc., on the final recognition performance, and the accuracy of target recognition reached 91.73%. The trained neural network is materialised by 3D printing technology and experiments confirmed that the system successfully performs real-time target recognition at a low sampling rate of 1.25%. It also verified the feasibility and noise resistance of the system in practical application scenarios.

利用全光神经网络实时识别目标,实现鬼影成像。
随机斑点图案的生成和结构特征影响着计算鬼影成像的实现和成像质量。它们的调制受到传统电子硬件的限制。我们的目标是利用全光学神经网络的特性来解决这一限制。这项工作提出了一种基于全光学衍射深度神经网络的实时目标识别系统,用于鬼影成像。我们利用训练有素的神经网络对可见光进行纯相位调制,通过检测不同位置光强信号的最大值直接完成目标识别任务。我们通过模拟网络层数、光敏像素、单位面积等参数对最终识别性能的影响,对系统进行了优化,目标识别准确率达到 91.73%。通过三维打印技术将训练好的神经网络实体化,实验证实该系统能在 1.25% 的低采样率下成功实现实时目标识别。实验还验证了系统在实际应用场景中的可行性和抗噪声能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics express
Optics express 物理-光学
CiteScore
6.60
自引率
15.80%
发文量
5182
审稿时长
2.1 months
期刊介绍: Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信