Roman Rousseau, Jérôme Morville, Claude Botella, Guillaume Saint-Girons
{"title":"Absorption line broadening in atomic beams produced in a molecular beam epitaxy environment.","authors":"Roman Rousseau, Jérôme Morville, Claude Botella, Guillaume Saint-Girons","doi":"10.1364/OE.536538","DOIUrl":null,"url":null,"abstract":"<p><p>Tunable diode laser absorption spectroscopy (TDLAS) is used to measure the 6s<sup>2</sup> <sup>1</sup>S-5d6p <sup>3</sup>D<sup>0</sup> absorption line profile of a Ba atomic beam produced in a molecular beam epitaxy (MBE) reactor. Despite the noisy MBE environment, a signal-to-noise ratio up to 100 is obtained thanks to a thorough optimization of the measurement setup. A model that realistically describes this absorption profile is presented, taking into account the angular distribution of atomic concentration in the atomic beam as well as the reactor and setup geometry. Our results highlight the influence of the latter on the Doppler line broadening, and allows to estimate the angular distribution of concentration in the beam emitted by the effusion cell. The model can be adapted to estimate the absorption profile for any element in any reactor geometry, making it a useful tool to design MBE dedicated atomic absorption sensors such as optical flux monitoring sensors, or to characterize the beam emitted by any effusion cell.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"32 23","pages":"40202-40218"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.536538","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Tunable diode laser absorption spectroscopy (TDLAS) is used to measure the 6s21S-5d6p 3D0 absorption line profile of a Ba atomic beam produced in a molecular beam epitaxy (MBE) reactor. Despite the noisy MBE environment, a signal-to-noise ratio up to 100 is obtained thanks to a thorough optimization of the measurement setup. A model that realistically describes this absorption profile is presented, taking into account the angular distribution of atomic concentration in the atomic beam as well as the reactor and setup geometry. Our results highlight the influence of the latter on the Doppler line broadening, and allows to estimate the angular distribution of concentration in the beam emitted by the effusion cell. The model can be adapted to estimate the absorption profile for any element in any reactor geometry, making it a useful tool to design MBE dedicated atomic absorption sensors such as optical flux monitoring sensors, or to characterize the beam emitted by any effusion cell.
期刊介绍:
Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.