750 nm laser based on an BaGa4Se7 optical parametric oscillator.

IF 3.2 2区 物理与天体物理 Q2 OPTICS
Optics express Pub Date : 2024-11-04 DOI:10.1364/OE.536974
Yunfan Ma, Hui Kong, Hui Shao, Jierui Zou, Boyu Liu, Yicheng Wang, Bo Shi, Fashuai Li, Kejun Wang, Yuwei Chen
{"title":"750 nm laser based on an BaGa<sub>4</sub>Se<sub>7</sub> optical parametric oscillator.","authors":"Yunfan Ma, Hui Kong, Hui Shao, Jierui Zou, Boyu Liu, Yicheng Wang, Bo Shi, Fashuai Li, Kejun Wang, Yuwei Chen","doi":"10.1364/OE.536974","DOIUrl":null,"url":null,"abstract":"<p><p>The red edge effect of plants is extensively utilized in vegetation remote sensing, particularly by applying hyperspectral LiDAR (HSL) technology. This technology effectively captures spectral information from targets together with range measurements by processing recorded waveforms in the red-edge spectral bands. Despite its widespread use, there is still potential for enhancing the tuning accuracy and the energy output of each channel. What we believe to be a novel nonlinear crystal, BaGa<sub>4</sub>Se<sub>7</sub> (BGSe), has been employed to achieve laser output in the red edge spectral band with a wide tuning range and high tuning precision for the first time. Successful generation of laser radiation at 1512 nm was achieved, with an angular tuning resolution of 35.9 nm/°. When the pump light energy was 17.81 mJ, the energy of the 1512 nm near-infrared laser was 3.210 mJ, with a slope efficiency of 31.2% and an optical-to-optical conversion efficiency (pump to signal) of 18.0%. Subsequent pumping of the second harmonic generation crystal KTiOPO<sub>4</sub> (KTP) with the 1512 nm laser output from the BGSe optical parametric oscillator (OPO) facilitated the generation of 756 nm red light laser output. Angle tuning of the BGSe OPO eventually enabled the tunable output of the red edge spectral laser ranging from 701 nm to 780 nm with output energy of approximately 2 mJ, which is several orders of magnitude higher than traditional supercontinuum laser source solution. Such improvement becomes a solid cornerstone for long-range HSL applications.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"32 23","pages":"40695-40705"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.536974","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The red edge effect of plants is extensively utilized in vegetation remote sensing, particularly by applying hyperspectral LiDAR (HSL) technology. This technology effectively captures spectral information from targets together with range measurements by processing recorded waveforms in the red-edge spectral bands. Despite its widespread use, there is still potential for enhancing the tuning accuracy and the energy output of each channel. What we believe to be a novel nonlinear crystal, BaGa4Se7 (BGSe), has been employed to achieve laser output in the red edge spectral band with a wide tuning range and high tuning precision for the first time. Successful generation of laser radiation at 1512 nm was achieved, with an angular tuning resolution of 35.9 nm/°. When the pump light energy was 17.81 mJ, the energy of the 1512 nm near-infrared laser was 3.210 mJ, with a slope efficiency of 31.2% and an optical-to-optical conversion efficiency (pump to signal) of 18.0%. Subsequent pumping of the second harmonic generation crystal KTiOPO4 (KTP) with the 1512 nm laser output from the BGSe optical parametric oscillator (OPO) facilitated the generation of 756 nm red light laser output. Angle tuning of the BGSe OPO eventually enabled the tunable output of the red edge spectral laser ranging from 701 nm to 780 nm with output energy of approximately 2 mJ, which is several orders of magnitude higher than traditional supercontinuum laser source solution. Such improvement becomes a solid cornerstone for long-range HSL applications.

基于 BaGa4Se7 光学参量振荡器的 750 nm 激光器。
植物的红边效应被广泛应用于植被遥感,特别是通过应用高光谱激光雷达(HSL)技术。该技术通过处理红边光谱波段的记录波形,有效捕捉目标的光谱信息和测距数据。尽管该技术已得到广泛应用,但在提高调谐精度和每个通道的能量输出方面仍有潜力可挖。我们首次采用了一种新型非线性晶体--BaGa4Se7(BGSe)来实现红边光谱波段的激光输出,调谐范围广,调谐精度高。成功产生了波长为 1512 nm 的激光辐射,角度调谐分辨率为 35.9 nm/°。当泵浦光能量为 17.81 mJ 时,1512 nm 近红外激光的能量为 3.210 mJ,斜率效率为 31.2%,光-光转换效率(泵浦到信号)为 18.0%。随后,用 BGSe 光学参量振荡器(OPO)输出的 1512 纳米激光对二次谐波发生晶体 KTiOPO4(KTP)进行泵浦,促进了 756 纳米红光激光输出的产生。BGSe OPO 的角度调谐最终实现了 701 纳米到 780 纳米红边光谱激光的可调谐输出,输出能量约为 2 mJ,比传统的超连续激光源解决方案高出几个数量级。这种改进为远距离 HSL 应用奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics express
Optics express 物理-光学
CiteScore
6.60
自引率
15.80%
发文量
5182
审稿时长
2.1 months
期刊介绍: Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信