Xenon plasma-focused ion beam milling for fabrication of high-purity, bright single-photon sources operating in the C-band.

IF 3.2 2区 物理与天体物理 Q2 OPTICS
Optics express Pub Date : 2024-11-04 DOI:10.1364/OE.534313
Maciej Jaworski, Paweł Mrowiński, Marek G Mikulicz, Paweł Holewa, Laura Zeidler, Marcin Syperek, Elizaveta Semenova, Grzegorz Sęk
{"title":"Xenon plasma-focused ion beam milling for fabrication of high-purity, bright single-photon sources operating in the C-band.","authors":"Maciej Jaworski, Paweł Mrowiński, Marek G Mikulicz, Paweł Holewa, Laura Zeidler, Marcin Syperek, Elizaveta Semenova, Grzegorz Sęk","doi":"10.1364/OE.534313","DOIUrl":null,"url":null,"abstract":"<p><p>Electron beam lithography is a standard method for fabricating photonic micro and nanostructures around semiconductor quantum dots (QDs), which are crucial for efficient single and indistinguishable photon sources in quantum information processing. However, this technique is difficult for direct 3D control of the structure shape, complicating the design and enlarging the 2D footprint to suppress in-plane photon leakage while directing photons into the collecting lens aperture. Here, we present an alternative approach to employ xenon plasma-focused ion beam (Xe-PFIB) technology as a reliable method for the 3D shaping of photonic structures containing low-density self-assembled InAs/InP quantum dots emitting in the C-band range of the 3rd telecommunication window. The method is optimized to minimize the possible ion-beam-induced material degradation, which allows exploration of both non-deterministic and deterministic fabrication approaches, resulting in photonic structures naturally shaped as truncated cones. As a demonstration, we fabricate mesas using a heterogeneously integrated structure with a QD membrane atop an aluminum mirror and silicon substrate. Finite-difference time-domain simulations show that the angled sidewalls significantly increase the emission collection efficiency to approx. 0.9 for NA = 0.65. We demonstrate experimentally a high purity of pulsed single-photon emission (∼99%) and a superior extraction efficiency value reported in the C-band of η = 24 ± 4%.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"32 23","pages":"41089-41101"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.534313","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Electron beam lithography is a standard method for fabricating photonic micro and nanostructures around semiconductor quantum dots (QDs), which are crucial for efficient single and indistinguishable photon sources in quantum information processing. However, this technique is difficult for direct 3D control of the structure shape, complicating the design and enlarging the 2D footprint to suppress in-plane photon leakage while directing photons into the collecting lens aperture. Here, we present an alternative approach to employ xenon plasma-focused ion beam (Xe-PFIB) technology as a reliable method for the 3D shaping of photonic structures containing low-density self-assembled InAs/InP quantum dots emitting in the C-band range of the 3rd telecommunication window. The method is optimized to minimize the possible ion-beam-induced material degradation, which allows exploration of both non-deterministic and deterministic fabrication approaches, resulting in photonic structures naturally shaped as truncated cones. As a demonstration, we fabricate mesas using a heterogeneously integrated structure with a QD membrane atop an aluminum mirror and silicon substrate. Finite-difference time-domain simulations show that the angled sidewalls significantly increase the emission collection efficiency to approx. 0.9 for NA = 0.65. We demonstrate experimentally a high purity of pulsed single-photon emission (∼99%) and a superior extraction efficiency value reported in the C-band of η = 24 ± 4%.

氙等离子体聚焦离子束铣削技术,用于制造在 C 波段工作的高纯度、明亮的单光子源。
电子束光刻技术是围绕半导体量子点(QDs)制造光子微结构和纳米结构的标准方法,对于量子信息处理中高效的单光子源和无差别光子源至关重要。然而,这种技术难以对结构形状进行直接三维控制,从而使设计复杂化,并扩大了二维足迹,无法在将光子导入收集透镜孔径的同时抑制面内光子泄漏。在此,我们提出了一种替代方法,即采用氙等离子体聚焦离子束(Xe-PFIB)技术作为一种可靠的方法,对包含低密度自组装 InAs/InP 量子点的光子结构进行三维成型,这些量子点在第三电信窗口的 C 波段范围内发射。我们对该方法进行了优化,以尽量减少离子束可能引起的材料降解,从而可以探索非确定性和确定性制造方法,从而制造出自然成型的截顶锥形光子结构。作为演示,我们利用铝镜和硅基底上的 QD 膜异质集成结构制作了介子。有限差分时域模拟显示,在 NA = 0.65 的条件下,倾斜侧壁将发射收集效率显著提高到约 0.9。我们通过实验证明了脉冲单光子发射的高纯度(99%),以及在 C 波段η = 24 ± 4% 的卓越提取效率值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics express
Optics express 物理-光学
CiteScore
6.60
自引率
15.80%
发文量
5182
审稿时长
2.1 months
期刊介绍: Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信