Omer Emre Ates, Benjamin J Slayton, William P Putnam
{"title":"Subwavelength-modulated silicon photonics for low-energy free-electron-photon interactions.","authors":"Omer Emre Ates, Benjamin J Slayton, William P Putnam","doi":"10.1364/OE.537296","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate silicon waveguides with subwavelength-scale modulation for applications in free-electron-photon interactions. The modulation enables velocity matching and efficient interactions between low-energy electrons and co-propagating photons. Specifically, we design a subwavelength-grating (SWG) waveguide for interactions between 23-keV free electrons and ≈1500-nm photons. The SWG waveguide and electron system exhibit a coupling coefficient of |g<sub>Qu</sub>| = 0.23, and as we corroborate with time-domain, particle-in-cell simulations, the system operates as a backward-wave oscillator. Overall, our results show that modulated waveguides could open the door to strong, extended interactions between photons and low-energy (10-keV-scale) electrons, like those typically present in scanning electron microscopes. Additionally, our SWG waveguide design suggests that periodic waveguides could offer intriguing dispersion engineering opportunities for tailoring these interactions.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"32 23","pages":"41892-41904"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.537296","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate silicon waveguides with subwavelength-scale modulation for applications in free-electron-photon interactions. The modulation enables velocity matching and efficient interactions between low-energy electrons and co-propagating photons. Specifically, we design a subwavelength-grating (SWG) waveguide for interactions between 23-keV free electrons and ≈1500-nm photons. The SWG waveguide and electron system exhibit a coupling coefficient of |gQu| = 0.23, and as we corroborate with time-domain, particle-in-cell simulations, the system operates as a backward-wave oscillator. Overall, our results show that modulated waveguides could open the door to strong, extended interactions between photons and low-energy (10-keV-scale) electrons, like those typically present in scanning electron microscopes. Additionally, our SWG waveguide design suggests that periodic waveguides could offer intriguing dispersion engineering opportunities for tailoring these interactions.
期刊介绍:
Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.