Jung-Woo Lim, Jun-Hee Lee, Jalil Ghassemi Nejad, Hong-Gu Lee
{"title":"Effects of L-leucine and sodium acetate on milk protein synthesis under heat stress conditions in bovine mammary epithelial cells in vitro","authors":"Jung-Woo Lim, Jun-Hee Lee, Jalil Ghassemi Nejad, Hong-Gu Lee","doi":"10.1016/j.jtherbio.2024.103975","DOIUrl":null,"url":null,"abstract":"<div><div>It is widely known that heat stress (HS) has negative effects on dairy cows, such as a reduction in milk production and milk protein. However, there has been no research yet on the effects of HS at the bovine mammary epithelial cells (MAC-T) level and the function of L-leucine (LEU) and sodium acetate (ACE) in reducing HS. In this study, we evaluated the negative effects of HS at various temperatures on MAC-T and verified whether LEU and ACE are effective at reducing HS and increasing protein synthesis. An experiment was conducted by dividing MAC-T into three groups: 39 °C, 41 °C, and 43 °C. In the case of LEU and ACE supplementation experiments, the cells were supplemented with 0, 0.45, 0.9, 1.8, and 3.6 mM of LEU and ACE to reach the differentiation medium. It was observed that under HS at 41 °C, HSP70, BAX, and eIF4EBP1 gene expression were increased, whereas Bcl-2, eIF4E, and PRKAA1 gene expression were decreased. When 1.8 mM of LEU was added under HS at 41 °C, it suppressed apoptosis by reducing the gene expression of HSP70 and controlling the gene expression of apoptosis-related genes such as BAX and Bcl-2. Additionally, mTOR, P-mTOR, and β-casein proteins were increased. In the case of 0.9 mM of ACE, it was found to decrease the gene expression of HSP70 and BAX and increase the amount of β-casein protein synthesis. Simultaneous supplementation of LEU and ACE has been shown to reduce HS, inhibit apoptosis, and increase β-casein protein expression. In summary, HS at 41 °C began to have a negative effect on MAC-T, while LEU and ACE reduced HS and inhibited apoptosis, alleviating cell damage and effectively increasing β-casein protein synthesis. The results suggest that LEU and ACE have the potential to reduce HS and promote protein synthesis under HS conditions in MAC-T.</div></div>","PeriodicalId":17428,"journal":{"name":"Journal of thermal biology","volume":"126 ","pages":"Article 103975"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of thermal biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306456524001931","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
It is widely known that heat stress (HS) has negative effects on dairy cows, such as a reduction in milk production and milk protein. However, there has been no research yet on the effects of HS at the bovine mammary epithelial cells (MAC-T) level and the function of L-leucine (LEU) and sodium acetate (ACE) in reducing HS. In this study, we evaluated the negative effects of HS at various temperatures on MAC-T and verified whether LEU and ACE are effective at reducing HS and increasing protein synthesis. An experiment was conducted by dividing MAC-T into three groups: 39 °C, 41 °C, and 43 °C. In the case of LEU and ACE supplementation experiments, the cells were supplemented with 0, 0.45, 0.9, 1.8, and 3.6 mM of LEU and ACE to reach the differentiation medium. It was observed that under HS at 41 °C, HSP70, BAX, and eIF4EBP1 gene expression were increased, whereas Bcl-2, eIF4E, and PRKAA1 gene expression were decreased. When 1.8 mM of LEU was added under HS at 41 °C, it suppressed apoptosis by reducing the gene expression of HSP70 and controlling the gene expression of apoptosis-related genes such as BAX and Bcl-2. Additionally, mTOR, P-mTOR, and β-casein proteins were increased. In the case of 0.9 mM of ACE, it was found to decrease the gene expression of HSP70 and BAX and increase the amount of β-casein protein synthesis. Simultaneous supplementation of LEU and ACE has been shown to reduce HS, inhibit apoptosis, and increase β-casein protein expression. In summary, HS at 41 °C began to have a negative effect on MAC-T, while LEU and ACE reduced HS and inhibited apoptosis, alleviating cell damage and effectively increasing β-casein protein synthesis. The results suggest that LEU and ACE have the potential to reduce HS and promote protein synthesis under HS conditions in MAC-T.
期刊介绍:
The Journal of Thermal Biology publishes articles that advance our knowledge on the ways and mechanisms through which temperature affects man and animals. This includes studies of their responses to these effects and on the ecological consequences. Directly relevant to this theme are:
• The mechanisms of thermal limitation, heat and cold injury, and the resistance of organisms to extremes of temperature
• The mechanisms involved in acclimation, acclimatization and evolutionary adaptation to temperature
• Mechanisms underlying the patterns of hibernation, torpor, dormancy, aestivation and diapause
• Effects of temperature on reproduction and development, growth, ageing and life-span
• Studies on modelling heat transfer between organisms and their environment
• The contributions of temperature to effects of climate change on animal species and man
• Studies of conservation biology and physiology related to temperature
• Behavioural and physiological regulation of body temperature including its pathophysiology and fever
• Medical applications of hypo- and hyperthermia
Article types:
• Original articles
• Review articles