Biolayer interferometry for measuring the kinetics of protein-protein interactions and nanobody binding.

IF 13.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Timothy A Bates, Sintayehu K Gurmessa, Jules B Weinstein, Mila Trank-Greene, Xammy Huu Wrynla, Aidan Anastas, Teketay Wassie Anley, Audrey Hinchliff, Ujwal Shinde, John E Burke, Fikadu G Tafesse
{"title":"Biolayer interferometry for measuring the kinetics of protein-protein interactions and nanobody binding.","authors":"Timothy A Bates, Sintayehu K Gurmessa, Jules B Weinstein, Mila Trank-Greene, Xammy Huu Wrynla, Aidan Anastas, Teketay Wassie Anley, Audrey Hinchliff, Ujwal Shinde, John E Burke, Fikadu G Tafesse","doi":"10.1038/s41596-024-01079-8","DOIUrl":null,"url":null,"abstract":"<p><p>Protein-protein interactions underpin nearly all biological processes, and understanding the molecular mechanisms that govern these interactions is crucial for the progress of biomedical sciences. The emergence of artificial intelligence-driven computational tools can help reshape the methods of structural biology; however, model data often require empirical validation. The large scale of predictive modeling data will therefore benefit from optimized methodologies for the high-throughput biochemical characterization of protein-protein interactions. Biolayer interferometry is one of very few approaches that can determine the rate of biomolecular interactions, called kinetics, and, of the commonly available kinetic measurement techniques, it is the most suitable for high-throughput experimental designs. Here we provide step-by-step instructions on how to perform kinetics experiments using biolayer interferometry. We further describe the basis and execution of competition and epitope binning experiments, which are particularly useful for antibody and nanobody screening applications. The procedure requires 3 h to complete and is suitable for users with minimal experience with biochemical techniques.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-024-01079-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Protein-protein interactions underpin nearly all biological processes, and understanding the molecular mechanisms that govern these interactions is crucial for the progress of biomedical sciences. The emergence of artificial intelligence-driven computational tools can help reshape the methods of structural biology; however, model data often require empirical validation. The large scale of predictive modeling data will therefore benefit from optimized methodologies for the high-throughput biochemical characterization of protein-protein interactions. Biolayer interferometry is one of very few approaches that can determine the rate of biomolecular interactions, called kinetics, and, of the commonly available kinetic measurement techniques, it is the most suitable for high-throughput experimental designs. Here we provide step-by-step instructions on how to perform kinetics experiments using biolayer interferometry. We further describe the basis and execution of competition and epitope binning experiments, which are particularly useful for antibody and nanobody screening applications. The procedure requires 3 h to complete and is suitable for users with minimal experience with biochemical techniques.

用于测量蛋白质-蛋白质相互作用和纳米抗体结合动力学的生物层干涉测量法。
蛋白质与蛋白质之间的相互作用是几乎所有生物过程的基础,了解支配这些相互作用的分子机制对于生物医学科学的进步至关重要。人工智能驱动的计算工具的出现有助于重塑结构生物学的方法;然而,模型数据往往需要经验验证。因此,对蛋白质-蛋白质相互作用进行高通量生化鉴定的优化方法将使大规模预测建模数据受益匪浅。生物层干涉测量法是能确定生物分子相互作用速率(称为动力学)的极少数方法之一,而且在常用的动力学测量技术中,它是最适合高通量实验设计的方法。在这里,我们将逐步说明如何使用生物层干涉测量法进行动力学实验。我们还进一步介绍了竞争和表位分选实验的基础和执行方法,这对抗体和纳米抗体筛选应用特别有用。整个过程需要 3 个小时,适合没有生化技术经验的用户。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Protocols
Nature Protocols 生物-生化研究方法
CiteScore
29.10
自引率
0.70%
发文量
128
审稿时长
4 months
期刊介绍: Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured. The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信