J R Hageman, J Zemaitis, R B Holtzman, S E Lee, L J Smith, C E Hunt
{"title":"Failure of non-selective inhibition of arachidonic acid metabolism to ameliorate hyperoxic lung injury.","authors":"J R Hageman, J Zemaitis, R B Holtzman, S E Lee, L J Smith, C E Hunt","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We have previously reported that bronchoalveolar lavage fluid cyclo-oxygenase products of arachidonic acid (AA) metabolism increase prior to the development of significant hyperoxic lung injury. To further assess the role of AA metabolites in the development of hyperoxic lung injury, we have utilized this same model of hyperoxic lung injury and administered either indomethacin (an inhibitor of the cyclo-oxygenase pathway of AA metabolism) or dexamethasone (inhibitor of AA release). A total of 46 adult rabbits were exposed to greater than 95% oxygen for 65 hours. Fourteen animals were given either 2 or 3 mg/kg/day indomethacin, 7 served as controls: 18 animals were given either 0.5 or 1.0 mg/kg/day of dexamethasone, 7 served as controls. The surviving animals were sacrificed after 65 hours of hyperoxia and bronchoalveolar lavage of the left lung was done; the right lung was examined by light microscopy. Treatment with indomethacin or dexamethasone failed to ameliorate the hyperoxic lung injury process. However, in both the indomethacin and dexamethasone treatment groups, significant suppression of 6-keto-PGF1 alpha, a PGI2 metabolite, was observed. Some suppression of TXB2 production was observed, but there was no evidence of any decrease in leukotriene production. We postulate that failure to ameliorate hyperoxic lung injury with either indomethacin or dexamethasone therapy was related to significant suppression of PGI2, a potentially protective AA metabolite, and/or to failure to significantly decrease production of potential pathogenic participants, such as TXA2 or LTB4.(ABSTRACT TRUNCATED AT 250 WORDS)</p>","PeriodicalId":20659,"journal":{"name":"Prostaglandins, leukotrienes, and essential fatty acids","volume":"32 3","pages":"145-53"},"PeriodicalIF":2.9000,"publicationDate":"1988-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prostaglandins, leukotrienes, and essential fatty acids","FirstCategoryId":"3","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We have previously reported that bronchoalveolar lavage fluid cyclo-oxygenase products of arachidonic acid (AA) metabolism increase prior to the development of significant hyperoxic lung injury. To further assess the role of AA metabolites in the development of hyperoxic lung injury, we have utilized this same model of hyperoxic lung injury and administered either indomethacin (an inhibitor of the cyclo-oxygenase pathway of AA metabolism) or dexamethasone (inhibitor of AA release). A total of 46 adult rabbits were exposed to greater than 95% oxygen for 65 hours. Fourteen animals were given either 2 or 3 mg/kg/day indomethacin, 7 served as controls: 18 animals were given either 0.5 or 1.0 mg/kg/day of dexamethasone, 7 served as controls. The surviving animals were sacrificed after 65 hours of hyperoxia and bronchoalveolar lavage of the left lung was done; the right lung was examined by light microscopy. Treatment with indomethacin or dexamethasone failed to ameliorate the hyperoxic lung injury process. However, in both the indomethacin and dexamethasone treatment groups, significant suppression of 6-keto-PGF1 alpha, a PGI2 metabolite, was observed. Some suppression of TXB2 production was observed, but there was no evidence of any decrease in leukotriene production. We postulate that failure to ameliorate hyperoxic lung injury with either indomethacin or dexamethasone therapy was related to significant suppression of PGI2, a potentially protective AA metabolite, and/or to failure to significantly decrease production of potential pathogenic participants, such as TXA2 or LTB4.(ABSTRACT TRUNCATED AT 250 WORDS)
期刊介绍:
The role of lipids, including essential fatty acids and their prostaglandin, leukotriene and other derivatives, is now evident in almost all areas of biomedical science. Cell membrane behaviour and cell signalling in all tissues are highly dependent on the lipid constituents of cells. Prostaglandins, Leukotrienes & Essential Fatty Acids aims to cover all aspects of the roles of lipids in cellular, organ and whole organism function, and places a particular emphasis on human studies. Papers concerning all medical specialties are published. Much of the material is particularly relevant to the development of novel treatments for disease.